Towards Efficient Ways of Estimating Failure Probability of Mechanical Structures Under Interval Uncertainty

Michael Beer1, Marco De Angelis1, and Vladik Kreinovich2

1Institute for Risk and Uncertainty, School of Engineering University of Liverpool, UK
mbeer@liverpool.ac.uk, Marco.De-Angelis@liverpool.ac.uk
2Department of Computer Science, University of Texas at El Paso
El Paso, TX 79968, USA, vladik@utep.edu
1. Case of Full Knowledge: Reminder

- The textbook approach to estimating the failure probability of mechanical structures assumes that:
 - we know the pdf $f(\theta)$ of quantities $\theta = (\theta_1, \ldots, \theta_n)$ describing the structure and its environment;
 - we know a limit function $g(\theta)$ such that:
 * stable states correspond to $g(\theta) > 0$, while
 * failures correspond to $g(\theta) < 0$.

- Once we know this information, we can find the desired failure probability P as the integral $P = \int_{g(\theta)<0} f(\theta) \, d\theta$.

- P can be computed by a (somewhat time-consuming) Monte-Carlo algorithm (MCA).
2. Case of Interval Uncertainty: A Description

- We often do not know the exact probabilities:
 - usually, we know that the distribution belongs to a certain family (e.g., that it is normal),
 - but we only know the bounds $\underline{p}_i \leq p_i \leq \overline{p}_i$ on the corresponding parameters p_i.

- Similarly, we know the general parametric expression for the limit function (e.g., that $g(\theta)$ is linear or quadratic).

- However, we only know the bounds on the actual (unknown) values of the corresponding parameters p_j.

- For each combination of parameters p_i, we can compute the failure probability $P_f(p_1, \ldots, p_m)$.

- We want to compute the range

$$[\underline{P}, \overline{P}] \overset{\text{def}}{=} \left\{ P_f(p_1, \ldots, p_n) : p_i \in [\underline{p}_i, \overline{p}_i] \right\}.$$
3. Linearization is Usually Possible

- Each interval can be represented as $[\tilde{p}_i - \Delta_i, \tilde{p}_i - \Delta_i]$, where \tilde{p}_i is a midpoint and Δ_i is half-width.

- Possible values p_i are $p_i = \tilde{p}_i + \Delta p_i$, with $|\Delta p_i| \leq \Delta_i$, so $P_f(p_1, \ldots, p_m) = P_f(\tilde{p}_1 + \Delta p_1, \ldots, \tilde{p}_m + \Delta p_m)$.

- The values Δ_i are usually reasonable small, hence the values Δp_i are also small; thus:
 - we can expand P_f into Taylor series
 - and keep only linear terms in this expansion:

$$P_f(\tilde{p}_1 + \Delta p_1, \ldots) = \tilde{P} + \sum_{i=1}^{m} c_i \cdot \Delta p_i, \quad \tilde{P} \overset{\text{def}}{=} P_f(\tilde{p}_1, \ldots), \quad c_i \overset{\text{def}}{=} \frac{\partial P}{\partial p_i}.$$

- Here, $\max(c_i \cdot \Delta p_i) = |c_i| \cdot \Delta_i$, so the range of P_f is

$$\left[\tilde{P} - \Delta, \tilde{P} + \Delta\right], \quad \text{where} \quad \Delta = \sum_{i=1}^{m} |c_i| \cdot \Delta_i.$$
4. Towards an Algorithm

• To compute $\Delta = \sum_{i=1}^{m} |c_i| \cdot \Delta_i$, we need to find c_i.

• If we replace one of \tilde{p}_i with $\tilde{p}_i + \Delta_i$, then, due to linearization, we get

$$P_i \overset{\text{def}}{=} P_f(\tilde{p}_1, \ldots, \tilde{p}_{i-1}, \tilde{p}_i + \Delta_i, \tilde{p}_{i+1}, \ldots, \tilde{p}_m) = \tilde{P} + c_i \cdot \Delta_i.$$

• Thus, $|c_i| \cdot \Delta_i = \left| P_i - \tilde{P} \right|$ and hence $\Delta = \sum_{i=1}^{m} \left| P_i - \tilde{P} \right|$.

• Algorithm: compute $\tilde{P} = P_f(\tilde{p}_1, \ldots, \tilde{p}_m)$, m values $P_i = P_f(\tilde{p}_1, \ldots, \tilde{p}_{i-1}, \tilde{p}_i + \Delta_i, \tilde{p}_{i+1}, \ldots, \tilde{p}_m)$, then

$$\Delta = \sum_{i=1}^{m} \left| P_i - \tilde{P} \right| \quad \text{and} \quad \left[\tilde{P} - \Delta, \tilde{P} + \Delta \right].$$

• This algorithm requires $m+1$ calls to MCA: to compute \tilde{P} and m values P_i.
5. Towards a Faster Algorithm

- When the number of parameters m is large, $m + 1$ calls may be too long.

- We can use the property of Cauchy distribution

 \[
 \rho_{\delta}(x) = \frac{\delta}{\pi} \cdot \frac{1}{1 + \frac{x^2}{\delta^2}}
 \]

 - if η_i are independently Cauchy-distributed with parameters Δ_i,

 - then $\eta \overset{\text{def}}{=} \sum_{i=1}^{m} c_i \cdot \eta_i$ is Cauchy-distributed with parameter $\Delta = \sum_{i=1}^{m} |c_i| \cdot \Delta_i$.

- Once we get simulated Cauchy-distributed values η, we can estimate Δ by the Maximum Likelihood method.

- We also need to scale η_i to the interval $[-\Delta_i, \Delta_i]$ on which the linear approximation is applicable.
6. Faster Algorithm

- First, we compute \(\tilde{P} = P_f(\tilde{p}_1, \ldots, \tilde{p}_m) \).
- For some \(N \) (e.g., 200), for \(k = 1, \ldots, N \), repeat:
 - use the random number generator to compute \(r_i^{(k)} \), \(i = 1, 2, \ldots, m \), uniformly distributed on \([0, 1]\);
 - compute Cauchy distributed values as \(c_i^{(k)} = \tan(\pi \cdot (r_i^{(k)} - 0.5)) \);
 - compute the largest value \(K \) of the values \(|c_i^{(k)}| \);
 - compute simulated “actual values” \(p_i^{(k)} = \tilde{p}_i + \frac{\Delta_i \cdot c_i^{(k)}}{K} \);
 - apply MCA and compute
 \[
 \Delta P^{(k)} = K \cdot \left(P_f\left(p_1^{(k)}, \ldots, p_i^{(k)}, \ldots, p_m^{(k)} \right) - \tilde{P} \right).
 \]
7. Faster Algorithm (cont-d)

• We have computed

\[\Delta P^{(k)} = K \cdot \left(P_f \left(p_1^{(k)}, \ldots, p_i^{(k)}, \ldots, p_m^{(k)} \right) - \bar{P} \right). \]

• Then, we compute \(\Delta \in \left[0, \max_k |\Delta P^{(k)}| \right] \) by applying the bisection method to the equation

\[
\frac{1}{1 + \left(\frac{\Delta P^{(1)}}{\Delta} \right)^2} + \ldots + \frac{1}{1 + \left(\frac{\Delta P^{(N)}}{\Delta} \right)^2} = \frac{N}{2}.
\]

• We stop when we get \(\Delta \) with accuracy \(\approx 20\% \) (accuracy 1\% and 1.2\% is approximately the same).

• The Cauchy-variate algorithm requires \(N \approx 200 \) calls to MCA.

• So, when \(m \gg 200 \), it is much faster than the above linearization-based algorithm.

\[\Delta P^{(k)} = K \cdot \left(P_f \left(p_1^{(k)}, \ldots, p_i^{(k)}, \ldots, p_m^{(k)} \right) - \bar{P} \right). \]
8. Need to Take Model Inaccuracy Into Account

• Often, the given finite-parametric family of distributions is only an approximation.

• Similarly, the given family of limit functions is only an approximation.

• As a result of the model uncertainty:

 – the value \(C = C_f(p_1, \ldots, p_m) \) produced by the approximate model

 – is, in general, different from the actual failure probability \(P = P_f(p_1, \ldots, p_m) \).

• Often, the only available information about the model inaccuracy \(C - P \) is the upper bound \(\delta: |C - P| \leq \delta \).

• Let us analyze how this inaccuracy affects our estimations.
9. What If We Use the Linearized Algorithm

- In the linearized case, the desired upper endpoint \overline{C} has the form $\overline{C} = \tilde{C} + \sum_{i=1}^{m} |\tilde{C} - C_i|$.

- Each of the values \tilde{C} and \tilde{C}_i is accurate only with accuracy δ.

- As a result, $|\overline{C} - \overline{P}| \leq (2m + 1) \cdot \delta$.

- Similarly, $|\overline{C} - \overline{P}| \leq (2m + 1) \cdot \delta$.

- As an interval which is guaranteed to contain the actual failure probability \overline{P}, we can thus take

 $$\left[\overline{C} - (2m + 1) \cdot \delta, \overline{C} + (2m + 1) \cdot \delta\right].$$

- When the number m of parameters is large, the approximation error $(2m + 1) \cdot \delta$ becomes significant.

- How can we decrease this approximation error?
10. Analysis of the Problem

- The actual maximum \(P \) is attained when \(\Delta p_i = \varepsilon_i \cdot \Delta_i \), where \(\varepsilon_i \overset{\text{def}}{=} \text{sign}(c_i) \).
- For these \(\varepsilon_i \), we have \(C_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots) \geq \bar{P} - \delta \).
- Thus, for \(\bar{C} \overset{\text{def}}{=} \max_{\varepsilon} C_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots) \), we get \(\bar{C} \geq \bar{P} - \delta \).
- On the other hand, for each \(\varepsilon \), we have
 \[
 C_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots) \leq P_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots) + \delta.
 \]
- Since \(P_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots) \leq \bar{P} \), we conclude that
 \[
 C_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots) \leq \bar{P} + \delta.
 \]
- Thus, for \(\bar{C} = \max_{\varepsilon} C_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots) \), we have
 \[
 \bar{C} \leq \bar{P} + \delta.
 \]
- So, the maximum \(\bar{C} \) provides a \(\delta \)-approximation to \(\bar{P} \).
11. First New Algorithm

- For all 2^m possible combinations of values $\varepsilon_1 \in \{-1, 1\}$, \ldots, $\varepsilon_m \in \{-1, 1\}$, we estimate $C_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots)$.
- Then, we compute the largest of these estimates \overline{C}.
- We can then guarantee that $|\overline{C} - \overline{P}| \leq \delta$.
- Similarly, the smallest of the values $C_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots)$ is δ-close to \overline{P}: $|C - P| \leq \delta$.
- The above algorithm requires at least 2^m estimates, which for large m is unrealistically large.
- It is known that if we want to find \tilde{P} with accuracy δ, we cannot use fewer than exponentially many calls.
- How can we decrease the uncertainty in estimating without increasing the number of calls too much?
12. Towards the Second New Algorithm

- Let us compute a new difference
 \[P_f(\ldots, \tilde{p}_i + \Delta_i, \ldots) - P_f(\ldots, \tilde{p}_i - \Delta_i, \ldots) = 2c_i \cdot \Delta_i. \]

- When \(P_f(\ldots) \) is known with accuracy \(\delta \), we have \(2c_i \cdot \Delta_i \) with accuracy \(2\delta \), hence \(|c_i| \cdot \Delta_i \) with accuracy \(\delta < 2\delta \).

- So, for each \(i = 0, \ldots, m \), we compute
 \[E_i = C_f(\tilde{p}_1 + \Delta_1, \ldots, \tilde{p}_i + \Delta_i, \tilde{p}_{i+1} - \Delta_{i+1}, \ldots, \tilde{p}_m - \Delta_m). \]

- We take the average \(\tilde{E} \) of all \(E_i \) as an estimate for \(\tilde{P} \), and \(\tilde{\Delta} \) as an estimate for \(\Delta \).

- This algorithm requires \(m + 1 \) calls to \(C_f \), but its accuracy is \((m + 1) \cdot \delta \) – twice better.
13. Towards the Third New Algorithm

- For $c_i \geq 0$, the maximum \overline{P} is attained when $\Delta p_i = \Delta_i$.
- When can we conclude that $c_i > 0$?
- We know that $E_i - E_{i-1}$ is a 2δ-approximation to $2c_i \cdot \Delta_i$.
- So, if $E_i - E_{i-1} \geq 2\delta$, we can conclude that $c_i \geq 0$.
- Thus, after computing each E_i, we mark i as $i \in S^+$ if $E_i - E_{i+1} \geq 2\delta$, and $i \in S^-$ if $E_i - E_{i+1} \leq -2\delta$.
- Let $s = \#(S^- \cup S^+)$ and $S_0 = -(S^- \cup S^+)$.
- Then, we compute $p_i^+ = \tilde{p}_i + \Delta_i$ when $i \in S^+$, $p_i^- = \tilde{p}_i - \Delta_i$ when $i \in S^-$, and $p_i^+ = \tilde{p}_i$ else.
- We then compute $C^+ = C_f(p_1^+, \ldots, p_m^+)$ and

$$
\overline{E} = C^+ + \frac{1}{2} \cdot \sum_{i \in S_0} |E_i - E_{i-1}| .
$$
14. Third New Algorithm (cont-d)

- Similarly, we compute \(p_i^- = \tilde{p}_i - \Delta_i \) when \(i \in S^+ \),
 \(p_i^- = \tilde{p}_i + \Delta_i \) when \(i \in S^- \), and \(p_i^- = \tilde{p}_i \) when \(i \in S_0 \).

- We then compute \(C^- = C_f(p_1^-, \ldots, p_m^-) \) and
 \[
 \overline{E} = C^- - \frac{1}{2} \cdot \sum_{i \in S_0} |E_i - E_{i-1}|.
 \]

- The estimates \(\overline{E} \) and \(E \) approximate \(\overline{P} \) and \(P \) with accuracy \((m + 1 - s) \cdot \delta\).

- This algorithm requires \(m + 3 \) calls to \(C_f \).

- \(s \) is large if there are many parameters which significantly affect the failure probability.

- In this case, we get a drastic improvement in accuracy – at the expense of having only two more calls to \(C_f \).
15. Similar Modification of the First Algorithm

- First, we compute the differences
 \[E_i = C_f(\tilde{p}_1 + \Delta_1, \ldots, \tilde{p}_i + \Delta_i, \tilde{p}_{i+1} - \Delta_{i+1}, \ldots, \tilde{p}_m - \Delta_m) \].

- We mark \(i \) as \(i \in S^+ \) if \(E_i - E_{i+1} \geq 2\delta \), as \(i \in S^- \) if \(E_i - E_{i+1} \leq -2\delta \), else as \(i \in S_0 \).

- To estimate \(\overline{P} \), we estimate \(2^{m-s} \) values
 \[C_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots) \), where:
 - \(\varepsilon_i = 1 \) for \(i \in S^+ \),
 - \(\varepsilon_i = -1 \) for \(i \in S^- \), and
 - we take all possible combinations of the values \(\varepsilon_i \in \{-1, 1\} \) for the remaining \(m-s \) indices \(i \in S_0 \).

- The largest of these estimates is then returned as an estimate \(\overline{C} \) for \(\overline{P} \).
16. Modified First Algorithm (cont-d)

- To estimate \underline{P}, we estimate 2^{m-s} values

$$C_f(\tilde{p}_1 + \varepsilon_1 \cdot \Delta_1, \ldots),$$

where:

- $\varepsilon_i = -1$ for $i \in S^+$,
- $\varepsilon_i = 1$ for $i \in S^-$, and
- we take all possible combinations of the values $\varepsilon_i \in \{-1, 1\}$ for the remaining $m - s$ indices $i \in S_0$.

- The smallest of these estimates is then returned as an estimate \underline{C} for \underline{P}.

- We get the same accuracy δ with $(m+1)+2 \cdot 2^{m-s} \ll 2^m$ calls to C_f.

17. Towards a Fourth Algorithm

- To get the best accuracy δ, we need all 2^{m-s} combinations of $m-s$ values $\varepsilon_i = \pm 1$.

- If we only have time for $\leq m + 3$ combinations, then we can gain accuracy $\leq (m - s + 1) \cdot \delta$.

- What if we have more computation time but still not enough to try all 2^{m-s} combinations?

- It then makes sense to select $g > 1$ and divide $m-s$ parameters $i \in S_0$ into $\frac{m-s}{g}$ groups G_ℓ of size g.

- Within each G_ℓ, we try all combinations, to estimate:
 - $s_1^+ \overset{\text{def}}{=} \tilde{P} + \sum_{i \in G_1} |c_i| \cdot \Delta_i$ (for the first group) and
 - $s_\ell \overset{\text{def}}{=} \sum_{i \in G_\ell} |c_i| \cdot \Delta_i$ (for all other groups $\ell > 1$).

- Then, we add up the resulting estimates (same for \overline{P}).
18. Towards a Similar Modification of the Cauchy Variate Algorithm

- Due to model inaccuracy, we only know the values \(P(p_1^{(k)}, \ldots) \) and \(\tilde{P} \) with accuracy \(\delta \).

- Thus, the computed value \(\tilde{\Delta}^{(k)} = K \cdot \left(C_f \left(p_1^{(k)}, \ldots \right) - \tilde{C} \right) \) is \((2K \cdot \delta)\)-close to the desired values \(\Delta P^{(k)} \):

\[
\Delta P^{(k)} \in \left[\tilde{\Delta}^{(k)} - 2K \cdot \delta, \tilde{\Delta}^{(k)} + 2K \cdot \delta \right].
\]

- In the formula for \(\Delta \), \(\Delta \) increases with each

\[
s_k \overset{\text{def}}{=} \left(\Delta P^{(k)} \right)^2.
\]

- Thus, to find the largest possible value of \(\Delta \), we need to take the largest possible value \(\bar{s}_k \) of \(\left(\Delta P^{(k)} \right)^2 \):

\[
\bar{s}_k = \left(\left| \tilde{\Delta}^{(k)} \right| + 2K \cdot \delta \right)^2.
\]
19. Resulting Algorithm

- First, we estimate \(\tilde{C} = C_f(\tilde{p}_1, \ldots, \tilde{p}_m) \).
- Then, we compute \(K \) and \(p_i^{(k)} \) as in the original Cauchy deviate algorithm, and estimate \(\tilde{\Delta}^{(k)} \) and
 \[
 \bar{s}_k = \left(|\tilde{\Delta}^{(k)}| + 2K \cdot \delta \right)^2.
 \]
- After that, we compute \(\Delta \in \left[0, \sqrt{\max_k \bar{s}_k} \right] \) by applying the bisection method to the equation
 \[
 \frac{1}{1 + \frac{\bar{s}_1}{\Delta^2}} + \ldots + \frac{1}{1 + \frac{\bar{s}_N}{\Delta^2}} = \frac{N}{2}.
 \]
- Finally, we return the range \([\tilde{C} - \Delta, \tilde{C} + \Delta] \).
20. Parallelization and Acknowledgments

- One can easily see that the above algorithms are easily parallelizable.

- This work was supported in part by the National Science Foundation grants:
 - HRD-0734825,
 - HRD-1242122, and
 - DUE-0926721.