Uncertainty Analysis Can Help in Explaining Kahneman and Tversky’s Empirical Decision Weights

Joe Lorkowski

Department of Computer Science
University of Texas at El Paso
El Paso, Texas 79968, USA
lorkowski@computer.org
Introduction

In simple situations, an average person can easily make a decision.

- If the weather forecast predicts rain, take an umbrella.

In complex situations, even when we know all the possible consequences of each action, it is not easy to make a decision.

- medicines have side effects:
- surgery can have bad outcomes,
- immune system suppression can result in infections

It is not always easy to compare different actions and even skilled experts appreciate computer-based help.
Need to Analyze how People Make Decisions

- We don’t know precisely what people need to make a decision.

- People cannot explain in precise terms why they selected an alternative.
 - We need analyze how people make decisions
 - and find a formal description to fit the observations.

- Start with the simplest case, full information:
 - we know all possible outcomes o_1, \ldots, o_n of actions;
 - we know the exact value of each outcome o_i; and
 - we know the probability of each outcome $p_i(a)$.
Need to Analyze how People Make Decisions

- We know the same action may have different outcomes u_i with different probabilities $p_i(a)$.

- By repeating a situation many times, the average expected gain becomes close to the mathematical expected gain:

$$u(a) \overset{\text{def}}{=} \sum_{i=1}^{n} p_i(a) \cdot u_i.$$

and we expect a decision maker to select action a for which this expected value $u(a)$ is greatest.

- This is close, but not exactly, what an actual person does.
Kahneman and Tversky’s Decision Weights

Kahneman and Tversky found a more accurate description is gained by:

 - an assumption of maximization of a *weighted gain* where
 - the weights are determined by the corresponding probabilities

so that people select the action a with the largest weighted gain

$$w(a) \overset{\text{def}}{=} \sum_i w_i(a) \cdot u_i$$

where $w_i(a) = f(p_i(a))$ for an appropriate function $f(x)$.
Empirical Results – Preferences for Gambles

Decision Weights for gains in gambles:

<table>
<thead>
<tr>
<th>probability</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>0</td>
<td>5.5</td>
<td>8.1</td>
<td>13.2</td>
<td>18.6</td>
<td>26.1</td>
<td>42.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>probability</th>
<th>80</th>
<th>90</th>
<th>95</th>
<th>98</th>
<th>99</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>weight</td>
<td>60.1</td>
<td>71.2</td>
<td>79.3</td>
<td>87.1</td>
<td>91.2</td>
<td>100</td>
</tr>
</tbody>
</table>

- There are qualitative explanations for this phenomenon.
- We propose a quantitative explanation based on uncertainty analysis.
Idea: "Distinguishable" Probabilities

- For decision making, most people do not estimate probabilities as numbers.
- Most people estimate probabilities with “fuzzy” concepts like \(\text{low}, \text{medium}, \text{high} \).
- The discretization converts a possibly infinite number of probabilities to a finite number of values.
- The discrete scale is formed by probabilities which are \textit{distinguishable} from each other.
 - 10% chance of rain is distinguishable from a 50% chance of rain, but
 - 51% chance of rain is not distinguishable from a 50% chance of rain.
Distinguishable Probabilities: Formalization

- In general, if out of n observations, the event was observed in m of them, we estimate the probability as the ratio $\frac{m}{n}$.

- The expected value of the frequency is equal to p, and that the standard deviation of this frequency is equal to $\sigma = \sqrt{\frac{p \cdot (1 - p)}{n}}$.

- By the Central Limit Theorem, for large n, the distribution of frequency is very close to the normal distribution.

- For normal distribution, all values are within 2–3 standard deviations of the mean, i.e. within the interval $(p - k_0 \cdot \sigma, p + k_0 \cdot \sigma)$.

- So, two probabilities p and p' are distinguishable if the corresponding intervals do not intersect:

 $$(p - k_0 \cdot \sigma, p + k_0 \cdot \sigma) \cap (p' - k_0 \cdot \sigma', p' + k_0 \cdot \sigma') = \emptyset$$

- The smallest difference $p' - p$ is when $p + k_0 \cdot \sigma = p' - k_0 \cdot \sigma'$.
Formalization (cont-d)

- When n is large, p and p' are close to each other and $\sigma' \approx \sigma$.
- Substituting σ for σ' into the above equality, we conclude

$$p' \approx p + 2k_0 \cdot \sigma = p + 2k_0 \cdot \sqrt{\frac{p \cdot (1 - p)}{n}}.$$

- So, we have distinguishable probabilities

$$p_1 < p_2 < \ldots > p_m,$$

where $p_{i+1} \approx p_i + 2k_0 \cdot \sqrt{\frac{p_i \cdot (1 - p_i)}{n}}$.

- We need to select a weight (subjective probability) based only on the level i.
- When we have m levels, we thus assign m probabilities

$$w_1 < \ldots < w_m.$$

- All we know is that $w_1 < \ldots < w_m$.
- There are many possible tuples with this property.
- We have no reason to assume that some tuples are more probable than others.
Analysis (cont-d)

- It is thus reasonable to assume that all these tuples are equally probable.
- Due to the formulas for complete probability, the resulting probability \(w_i \) is the average of values \(w_i \) corresponding to all the tuples: \(E[w_i | 0 < w_1 < \ldots < w_m = 1] \).
- These averages are known: \(w_i = \frac{i}{m} \).
- So, to probability \(p_i \), we assign weight \(g(p_i) = \frac{i}{m} \).
- For \(p' \approx p + 2k_0 \cdot \sqrt{\frac{p \cdot (1 - p)}{n}} \), we have
 \[
 g(p) = \frac{i}{m} \quad \text{and} \quad g(p') = \frac{i + 1}{m}.
 \]
Analysis (cont-d)

- Since \(p \) and \(p' \) are close, \(p' - p \) is small:
 - we can expand \(g(p') = g(p + (p' - p)) \) in Taylor series and keep only linear terms
 - \(g(p') \approx g(p) + (p' - p) \cdot g'(p) \), where \(g'(p) = \frac{dg}{dp} \) denotes the derivative of the function \(g(p) \).
 - Thus, \(g(p') - g(p) = \frac{1}{m} = (p' - p) \cdot g'(p) \).

- Substituting the expression for \(p' - p \) into this formula, we conclude
 \[
 \frac{1}{m} = 2k_0 \cdot \sqrt{\frac{p \cdot (1 - p)}{n}} \cdot g'(p).
 \]

- This can be rewritten as \(g'(p) \cdot \sqrt{p \cdot (1 - p)} = \text{const} \) for some constant.

- Thus, \(g'(p) = \text{const} \cdot \frac{1}{\sqrt{p \cdot (1 - p)}} \) and, since \(g(0) = 0 \) and \(g(1) = 1 \), we get \(g(p) = \frac{2}{\pi} \cdot \arcsin(\sqrt{p}) \).
Assigning Weights to Probabilities: First Try

- For each probability $p \in [0, 1]$, assign the weight
 \[g(p) = \frac{2}{\pi} \cdot \arcsin(\sqrt{p}) \]

- Results:
 p_i are original probabilities,
 \tilde{w}_i are Kahneman’s empirical weights, and
 $w_i = g(p_i)$ were computed with the above formula.

<table>
<thead>
<tr>
<th>p_i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{w}_i</td>
<td>0</td>
<td>5.5</td>
<td>8.1</td>
<td>13.2</td>
<td>18.6</td>
<td>26.1</td>
<td>42.1</td>
</tr>
<tr>
<td>$w_i = g(p_i)$</td>
<td>0</td>
<td>6.4</td>
<td>9.0</td>
<td>14.4</td>
<td>20.5</td>
<td>29.5</td>
<td>50.0</td>
</tr>
</tbody>
</table>
How to Get a Better Fit between Theoretical and Observed Weights

- All we observe is which action a person selects.
- Based on selection, we cannot uniquely determine weights.
- An empirical selection consistent with weights w_i is equally consistent with weights $w'_i = \lambda \cdot w_i$.
- First-try results were based on constraints that $g(0) = 0$ and $g(1) = 1$ which led to a perfect match at both ends and lousy match "on average."
- Instead, select λ using Least Squares such that $\sum_i \left(\frac{\lambda \cdot w_i - \tilde{w}_i}{w_i} \right)^2$ is the smallest possible.
- Differentiating with respect to λ and equating to zero:
 $$\sum_i \left(\lambda - \frac{\tilde{w}_i}{w_i} \right) = 0,$$
 so $\lambda = \frac{1}{m} \cdot \sum_i \frac{\tilde{w}_i}{w_i}$.

For the values being considered, $\lambda = 0.910$

For $w'_i = \lambda \cdot w_i = \lambda \cdot g(p_i)$

\tilde{w}_i	0	5.5	8.1	13.2	18.6	26.1	42.1
$w'_i = \lambda \cdot g(p_i)$	0	5.8	8.2	13.1	18.7	26.8	45.5
$w_i = g(p_i)$	0	6.4	9.0	14.4	20.5	29.5	50.0

For most probabilities, the difference between the uncertainty-motivated weights w'_i and the empirical weights \tilde{w}_i is small.

Conclusion: Uncertainty analysis explains Kahneman and Tversky’s empirical decision weights.
Appendix: Derivations

- We have \(g'(p) \cdot \sqrt{p \cdot (1 - p)} = \text{const} \) for some constant.
- Integrating with \(p = 0 \) corresponding to the lowest 0-th level – i.e., that \(g(0) = 0 \)

 \[
g(p) = \text{const} \cdot \int_0^p \frac{dq}{\sqrt{q \cdot (1 - q)}}.\]

- Introduce a new variable \(t \) for which \(q = \sin^2(t) \) and

 - \(dq = 2 \cdot \sin(t) \cdot \cos(t) \cdot dt \),
 - \(1 - p = 1 - \sin^2(t) = \cos^2(t) \) and, therefore,
 - \(\sqrt{p \cdot (1 - p)} = \sqrt{\sin^2(t) \cdot \cos^2(t)} = \sin(t) \cdot \cos(t) \).
The lower bound \(q = 0 \) corresponds to \(t = 0 \)

the upper bound \(q = p \) corresponds to the value \(t_0 \) for which \(\sin^2(t_0) = p \)
i.e., \(\sin(t_0) = \sqrt{p} \) and \(t_0 = \arcsin(\sqrt{p}) \).

Therefore,

\[
g(p) = \text{const} \cdot \int_0^p \frac{dq}{\sqrt{q \cdot (1 - q)}} = \\
\text{const} \cdot \int_0^{t_0} 2 \cdot \frac{\sin(t) \cdot \cos(t) \cdot dt}{\sin(t) \cdot \cos(t)} = \int_0^{t_0} 2 \cdot dt = \\
2 \cdot \text{const} \cdot t_0.
\]
Derivations (final)

- We know t_0 depends on p, so we get

\[g(p) = 2 \cdot \text{const} \cdot \arcsin(\sqrt{p}) . \]

- We determine the constant by
 - the largest possible probability value $p = 1$ implies
 \[g(1) = 1, \text{ and} \]
 - \[\arcsin(\sqrt{1}) = \arcsin(1) = \frac{\pi}{2} \]

- Therefore, we conclude that

\[g(p) = \frac{2}{\pi} \cdot \arcsin(\sqrt{p}) . \]