Why neural networks in the first place: a theoretical explanation

Jonathan Contreras, Martine Ceberio Olga Kosheleva, Vladik Kreinovich
University of Texas at El Paso
500 W. University
El Paso, Texas 79968, USA
jmcontreras2@utep.edu, mceberio@utep.edu, olgak@utep.edu, vladik@utep.edu
1. A natural question

- At present, the most successful machine learning tool is deep neural networks – a specific case of neural networks.
- This empirical success leads to a natural question: why are deep neural networks so successful?
- There are some theoretical explanations of why deep neural networks are more successful than traditional neural networks.
- There are some explanations of why neural networks are usually more effective than some other technique.
- E.g., there are explanations of why neural networks are more effective than support vector machines.
- However, a general question remains: why neural networks in general are so effective in the first place?
2. A natural question (cont-d)

- This question is not only about computer applications.
- Artificial neural networks started by simulating biological neurons – that are largely performing similar data processing.
- Biological neurons are a product of billions of years of improving evolution.
- So the fact that this type of data processing is used in biological neurons is a good indication that such data processing is effective.
- But why?
3. Let us formulate this question in more precise terms

- A neural network is composed of *neurons*.
- Each neuron transforms the inputs x_1, \ldots, x_n into an output value $y = s(w_1 \cdot x_1 + \ldots + w_n \cdot x_n + w_0)$ for some coefficients w_i.
- In other words:
 - first, we form a linear combination $X \overset{\text{def}}{=} w_1 \cdot x_1 + \ldots + w_n \cdot x_n + w_0$ of the inputs, and
 - then, we apply a non-linear function $s(x)$ of one variable – known as the *activation function* – to this linear combination X.
- In these terms, the above question is:
- Why is the above family of non-linear functions more effective than other possible families of non-linear functions?
4. **Let us simplify this question**

- In order to answer this question, let us perform the following two simplifications.

- First, let us notice that in the linear expression, the last term w_0 is different from all the other terms.

- To make this formula more uniform, let us follow the usual arrangement and introduce an auxiliary variable $x_0 = 1$.

- Then, the above formula takes the form $s(w_0 \cdot x_0 + \ldots + w_n \cdot x_n)$.

- Second, let us take into account that in many cases, the output signal y represents the value of some physical quantity.

- This happens, e.g., at the last layer of the neural network, when we generate the computations result.

- In a prediction problem, this result is about the future value of the quantity of interest (e.g., the distance between a mobile robot and a wall).
5. Let us simplify this question (cont-d)

- The numerical value of a quantity depends on the choice of a measuring unit.

- If we select a new measuring unit which is C times smaller than the original one, then all numerical values will multiply by C.

- E.g., if we replace meters by centimeters, all values are multiplied by 100.

- In the new units, the output of the neuron takes the form

$$C \cdot s(w_0 \cdot x_0 + \ldots + w_n \cdot x_n).$$

- From this viewpoint:

 - instead of considering a family of all the functions corresponding to different values w_i,

 - it makes sense to consider a more general family corresponding to all possible values of C and w_i.

6. What we do in this talk

• In this talk, we explain why:
 – the above family is better than
 – other possible families of nonlinear functions that have the same (or smaller) number of parameters.

• This provides a possible theoretical explanation of why neural networks – in particular, deep neural networks – are so effective.
7. Natural robustness requirement on transformation functions

- Inputs to data processing comes from measurements, and measurements are never absolutely accurate.

- There is, in general, a non-zero difference between the measurement result \tilde{x}_i and the actual (unknown) value x_i of the measured quantity.

- This difference is known as the *measurement error*.

- This difference affects the result of data processing.

- We want to make sure that the corresponding effect is not amplified too much.

- We want to make sure that the difference in the results is proportional to the measurement errors.
8. Natural robustness requirement (cont-d)

- So, the corresponding transformation $y = f(x_1, \ldots, x_n)$ should satisfy the following inequality for some L:

 $$|f(\tilde{x}_0, \ldots, \tilde{x}_n) - f(x_1, \ldots, x_n)| \leq L \cdot (|\tilde{x}_0 - x_0| + \ldots + |\tilde{x}_n - x_n|).$$

- Such functions are known as \textit{Lipschitz continuous}.

- It is known that Lipschitz functions are almost everywhere differentiable.

- Many of their properties are similar to properties of smooth (everywhere differentiable) functions.
9. What do we mean by a family of functions

- We are interested in functions of \(n + 1 \) variables \(x_0, \ldots, x_n \).
- The above expression describes a family of such functions that depends:
 - in addition to the multiplicative factor \(C \), on \(n + 1 \) parameters \(w_0, \ldots, w_n \),
 - to the total of \(n + 2 \).
- We are interested in families with the same (or smaller) number of parameters.
- So, we need to consider families that also depend on no more than \(n + 2 \) parameters.
- We also want to make sure that a family is uniquely determined by its functions.
- So if we simply change the parameters without changing the class of functions, we will end up with the same family.
10. Resulting definition

- Let n and p be positive integers.
- We will denote $x = (x_0, \ldots, x_n)$ and $c = (c_0, \ldots, c_p)$.
- We say that two nonlinear Lipschitz continuous mapping $f(x, c)$ and $g(x, c')$ are equivalent if the following two conditions are satisfied
 - for each C and for each tuple c, there exists a value C' and a tuple c' for which, for all x, we have: $C \cdot f(x, c) = C' \cdot g(x, c')$;
 - for each C' and for each tuple c', there exists a value C and a tuple c for which, for all x, we have: $C' \cdot g(x, c') = C \cdot f(x, c)$.
- By a family, we mean an equivalence class of functions – in terms of the above equivalence.
- A family \mathcal{F} is determined by the mapping $f(x, c)$.
- We say that a function $t(x)$ belongs to \mathcal{F} if there exist values C, c for which, for all x, we have $t(x) = C \cdot f(x, c)$.
11. What do we mean by “better”?

- We want to analyze why families corresponding to neural data processing perform better than other possible nonlinear families.

- Usually, “better” means that:
 - we have some numerical criterion – e.g., mean square approximation error after a certain fixed computation time, and
 - “better” means a smaller value of this numerical criterion.

- However, we can have more complex cases; e.g.:
 - if we have several families with the same mean square approximation error,
 - we can select, among them, the one with the smallest probability of approximation errors exceeding some given threshold.

- If this still leaves us with several possible families, we can minimize something else, etc.
12. What do we mean by “better” (cont-d)

- So, to describe what is better in the most general way, let us go beyond simple numerical criteria.
- Let us simply require that we have two relations on the set of all families:
 - a relation $F < G$ meaning that a family F is better than the family G; and
 - a relation $F \sim G$ meaning that a family F has the same quality as the family G – with respect to the given criterion.
- It is reasonable to require that these two relations satisfy transitivity:
 - if F is better than G, and G is better than H,
 - then F should be better than H.
- Thus, we arrive at the following definition.
13. Resulting definition

- By an *optimality criterion*, we mean a pair of relations \((<, \sim)\) for which the following properties hold for all \(F, G, H\):
 - if \(F < G\) and \(G < H\), then \(F < H\);
 - if \(F < G\) and \(G \sim H\), then \(F < H\);
 - if \(F \sim G\) and \(G < H\), then \(F < H\);
 - if \(F \sim G\) and \(G \sim H\), then \(F \sim H\);
 - if \(F \sim G\), then \(G \sim F\);
 - if \(F < G\), then we cannot have \(F \sim G\).

- In mathematical terms, this pair is known as *pre-order*.

- The difference from order is that we can have \(F \sim G\) for \(F \neq G\).
14. What is meant by “better” (cont-d)

- We have mentioned that:
 - if there are several families which are optimal with respect to a given criterion,
 - this means that we can optimize something else,
 - i.e., in effect, that the original criterion was not final.

- Thus, we arrive at the following definition.

- We say that a family F_{opt} is *optimal* with respect to the optimality criterion $(<, \sim)$ if for every family F, we have $F_{\text{opt}} < F$ or $F_{\text{opt}} \sim F$.

- We say that the optimality criterion $(<, \sim)$ is *final* if there is exactly one family which is optimal with respect to this criterion.
15. Invariance

- In many practical situations, it makes sense to consider not only the original values x_i, but also their linear combinations $x'_i = \sum_{j=0}^{n} a_{ij} \cdot x_j$.

- Here a_{ij} is a reversible matrix.

- For example, if x_i are coordinates, we can use a different coordinate system.

- We can also use different units for different inputs.

- This also – as we mentioned earlier – amounts to linear transformations $x_i \rightarrow C_i \cdot x_i$.

- Such a transformation does not change the problem.

- So it makes sense to require that the result of comparing two families should not change if we simply apply such a transformation.
16. Invariance (cont-d)

- For example, it would be strange if:
 - one program worked better if all the data are in meters,
 - but another one is better if all inputs are in inches.

- Thus, we arrive at the following definition.
17. Resulting definition

- By an *affine transformation* A, we mean a reversible linear transformation.
- Let a family \mathcal{F} be described by a function $f(x_0, \ldots, x_n, c_0, \ldots, c_p)$ and let A be an affine transformation.
- By the *result* $A(\mathcal{F})$, we mean a family generated by the function

$$ T f(x_0, \ldots, x_n, c_0, \ldots, c_p) \overset{\text{def}}{=} f \left(\sum_{j=0}^{n} a_{0j} \cdot x_j, \ldots, \sum_{j=0}^{n} a_{nj} \cdot x_j, c_0, \ldots, c_p \right). $$

- We say that $(<, \sim)$ is *affine-invariant* if for every affine transformation A and for every two families \mathcal{F} and \mathcal{G}, we have:
 - if $\mathcal{F} < \mathcal{G}$, then $A(\mathcal{F}) < A(\mathcal{G})$; and
 - if $\mathcal{F} \sim \mathcal{G}$, then $A(\mathcal{F}) \sim A(\mathcal{G})$.
- Now, we are ready to formulate our main result.
18. Main result

- The smallest p for which there exists an affine-invariant final optimality criterion on the set of all families is $p = n$.
- For $p = n$, for every affine-invariant final optimality criterion on the set of all families, the optimal family is of neural form for some $s(x)$.
- In other words, neurons are indeed optimal non-linear transformation functions.
- They are optimal with respect to any optimality criterions that satisfies reasonable properties of being final and affine-invariant.
19. Proof: Part 1

- Let \((<, \sim)\) be a final affine-invariant optimality criterion.
- Let \(\mathcal{F}_{\text{opt}}\) denote the family which is optimal with respect to this criterion.
- Let us prove that this function has the neural form.
- Let us first prove that the family \(\mathcal{F}_{\text{opt}}\) is itself affine-invariant, i.e., that for each affine transformation \(A\), we have \(A(\mathcal{F}_{\text{opt}}) = \mathcal{F}_{\text{opt}}\).
- Indeed, the fact that the family \(\mathcal{F}_{\text{opt}}\) is optimal means that for every family \(\mathcal{F}\), we have either \(\mathcal{F}_{\text{opt}} < \mathcal{F}\) or \(\mathcal{F}_{\text{opt}} \sim \mathcal{F}\).
- In particular, for every family \(\mathcal{F}\), one of these two conditions is satisfied for the family \(A^{-1}(\mathcal{F})\), where \(A^{-1}\) is the inverse.
- In other words, we have either \(\mathcal{F}_{\text{opt}} < A^{-1}(\mathcal{F})\) or \(\mathcal{F}_{\text{opt}} \sim A^{-1}(\mathcal{F})\).
- Due to affine-invariance, taking into account that \(A(A^{-1}(\mathcal{F})) = \mathcal{F}\), we conclude that \(A(\mathcal{F}_{\text{opt}}) < \mathcal{F}\) or \(A(\mathcal{F}_{\text{opt}}) \sim \mathcal{F}\).
20. Proof: Part 1 (cont-d)

- Due to affine-invariance, taking into account that \(A(A^{-1}(\mathcal{F})) = \mathcal{F} \), we conclude that \(A(\mathcal{F}_{\text{opt}}) < \mathcal{F} \) or \(A(\mathcal{F}_{\text{opt}}) \sim \mathcal{F} \).

- This is true for each family \(\mathcal{F} \).

- By definition of optimality, this means that the family \(A(\mathcal{F}_{\text{opt}}) \) is optimal.

- But we know that \(\mathcal{F}_{\text{opt}} \) is optimal.

- We assumed that our optimality criterion is final – which means that there is only one optimal family.

- Thus, we indeed have \(A(\mathcal{F}_{\text{opt}}) = \mathcal{F}_{\text{opt}} \).
21. Proof: Part 2

- In Part 1, we proved that:
 - for each function \(t(x_1, \ldots, x_n) \) from the optimal family and for each affine transformation,
 - the transformed function also belongs to the same optimal family.
- The functions \(f \) forming the family \(\mathcal{F} \) are Lipschitz and thus, almost everywhere differentiable.
- Let us pick one such function \(t(x_0, \ldots, x_n) \); this function is nonlinear and almost everywhere differentiable.
- So, there exist points \((X_0, \ldots, X_n)\) where its value is non-zero and its gradient is defined and is non-zero. Let us select one such point.
- We can perform an affine transformation of coordinates so that in the new coordinates the gradient vector will be parallel to the 0-th axis.
- E.g., we can rotate the axes so that one of the axes becomes parallel to the gradient vector.
In the new coordinates z_0, \ldots, z_n, for the correspondingly transformed function $T(z_0, \ldots, z_n)$, we have

$$\nabla T = \left(\frac{\partial T}{\partial z_0}, \frac{\partial T}{\partial z_1}, \ldots, \frac{\partial T}{\partial z_n} \right) = (1, 0, \ldots, 0).$$

This is true at the selected point – which in the new coordinates, has the form (Z_0, \ldots, Z_n).

By multiplying this function $T \in \mathcal{F}_{\text{opt}}$ by an appropriate constant C, we can get:

- for each possible value $T_0 \neq 0$, a new function from the family \mathcal{F} for which $C \cdot T(Z_0, \ldots, Z_n) = T_0$ and
- for which the gradient is still parallel to the 0-th axis.
23. Proof: Part 2 (cont-d)

- Similarly, for any given non-zero vector \(v = (v_0, \ldots, v_n) \), by rotating the coordinates \(z_i \) (and, if needed, by re-scaling all of them):
 - we can get a new function from the family \(\mathcal{F}_{opt} \)
 - for which the gradient at the point \((Z_0, \ldots, Z_n) \) is equal to \(v \).

- Thus, for each tuple \((T_0, v_0, \ldots, v_n) \), we have a function from the family \(\mathcal{F}_{opt} \) for which:
 - the value at the point \((Z_0, \ldots, Z_n) \) is equal to \(T_0 \) and
 - the gradient at this point is equal to \((v_0, \ldots, v_n) \).

- Thus:
 - if we assign, to each tuple \((T_0, v_0, \ldots, v_n) \), one of the corresponding functions from the family \(\mathcal{F}_{opt} \),
 - we will get a \((n + 2)\)-parametric family of functions.

- Thus, the total number \(p + 2 \) of parameters (one parameter \(C \) and \(p + 1 \) parameters \(c_0, \ldots, c_p \)) cannot be smaller than \(n + 2 \), thus \(p \geq n \).
24. Proof: Part 2 (cont-d)

- This proves the first statement of our proposition.
- To be more precise, we also need to prove that such a criterion exists, but this is easy; e.g., a criterion according to which:
 - the neural family is better than every other family, while
 - all other families are equivalent to each other – is clearly final and affine-invariant.
- Let us prove the second statement.
- For this, let us consider the case when $p = n$.
- In this case, the whole family \mathcal{F}_{opt} depends only on $n + 2$ parameters; thus:
 - if we had, for each tuple, a whole at-least-1-parametric family of functions corresponding to this tuple,
 - we would have a family determined by more than $n + 2$ parameters.
25. **Proof: Part 2 (cont-d)**

- This would contradict to our assumption that $p = n$.
- In particular, this means that the functions $T(z_0, \alpha \cdot z_1, z_2, \ldots, z_n)$ corresponding to all $\alpha > 0$:

 - which also belong to the family \mathcal{F}_{opt} and for which the tuple (T_0, v_0, \ldots, v_n) is the same
 - cannot form a 1-parametric family.
- This means that all these functions should all be identical, i.e., that

 \[T(z_0, \alpha \cdot z_1, z_2, \ldots, z_n) = T(z_0, \alpha' \cdot z_1, z_2, \ldots, z_n) \text{ for all } \alpha \text{ and } \alpha'. \]

- This means that the function T cannot depend on z_1 at all.
26. Proof: Part 2 (cont-d)

- Similarly, we can prove that the function does not depend on any other variable, i.e., that it depends only on z_0.
- So, $T(z_0, \ldots, z_n) = s(z_0)$ for some function $s(x)$ of one variable.
- By applying linear transformations to z_i and multiplying the expression yC, we get exactly the neural family.
- The proposition is proven.
Acknowledgments

- This work was supported in part by the National Science Foundation grants:
 - 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science), and
 - HRD-1834620 and HRD-2034030 (CAHSI Includes).
- It was also supported by the AT&T Fellowship in Information Technology.
- It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.