Reliability Analysis for Aerospace Applications: Reducing Over-Conservative Expert Estimates in the Presence of Limited Data

Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
vladik@utep.edu
1. Reliability

- Failures are ubiquitous, so reliability analysis is an important part of engineering design.

- In reliability analysis of a complex system, it is important to know the reliability of its components.

- Reliability of a component is usually described by an exponential model:

\[P(t) \overset{\text{def}}{=} \text{Prob}(\text{system is intact by time } t) = \exp(-\lambda \cdot t). \]

- For this model, the average number of failures per unit time (failure rate) is equal to \(\lambda \).

- Another important characteristic – mean time between failure (MTBF) \(\theta \) – is, in this model, equal to \(1/\lambda \).

- Usually, the MTBF is estimated as the average of observed times between failures.
2. Reliability in Aerospace Industry: A Challenge

- In aerospace industry, reliability is extremely important, especially for manned flights.

- Because of this importance, aerospace systems use unique, highly reliable components; but:
 - since each component is highly reliable,
 - we have few (≤ 5) failure records, not enough to make statistically reliable estimates of λ.

- So, we have to also use expert estimates.

- Problem: experts are over-conservative, their estimates for λ are higher than the actual failure rate.

- In this presentation, we describe an algorithm that reduces the effect of this over-conservativeness.
3. Available Data and Main Assumptions

- For each of n components $i = 1, \ldots, n$, we have n_i observed times-between-failures t_{i1}, \ldots, t_{in_i}.
- We also have expert estimates e_1, \ldots, e_n for the failure rate of each component.
- We usually assume the exponential distribution for the failure times, i.e., the probability density $\lambda_i \cdot \exp(-\lambda_i \cdot t)$.
- Thus, the probability density corresponding to each observation t_{ij} is equal to $\lambda_i \cdot \exp(-\lambda_i \cdot t_{ij})$.
- Different observations are assumed to be independent.
- Different components are assumed to be independent.
- Thus, the probability density ρ corresponding to all observed failures is equal to the product:

$$\rho = \prod_{i=1}^{n} \prod_{j=1}^{n_i} (\lambda_i \cdot \exp(-\lambda_i \cdot t_{ij})).$$
4. How Parameters Are Determined Now

- **Reminder:** prob. is \(\rho = \prod_{i=1}^{n} \prod_{j=1}^{n_i}(\lambda_i \cdot \exp(-\lambda_i \cdot t_{ij})) \).

- **Maximum Likelihood Approach:** find \(\lambda_i \) with the highest probability \(\rho \).

- **Idea:** \(\rho \to \text{max} \) if and only if \(\psi = -\ln(\rho) \to \text{min} \):

\[
\psi(\lambda_i) = -\sum_{i=1}^{n} n_i \cdot \ln(\lambda_i) + \sum_{i=1}^{n} \sum_{j=1}^{n_i} \lambda_i \cdot t_{ij}.
\]

- So, \(\psi(\lambda_i) = -\sum_{i=1}^{n} n_i \cdot \ln(\lambda_i) + \sum_{i=1}^{n} n_i \cdot \lambda_i \cdot t_i \), where

\[
t_i \overset{\text{def}}{=} \frac{1}{n_i} \cdot \sum_{j=1}^{n_i} t_{ij}.
\]

- Differentiating by \(\lambda_i \) and equating the derivative to 0, we get the traditional estimate \(\lambda_i = \frac{1}{t_i} \).
5. What Is the Accuracy of This Estimate?

- **Central Limit Theorem**: when we have a large amount of data, the distribution of each parameter is approximately normal:

 \[\rho(\lambda_i) = \text{const} \cdot \exp \left(-\frac{(\lambda_i - \mu_i)^2}{2 \cdot \sigma_i^2} \right). \]

- Thus, \(\psi(\lambda_i) = \text{const} + \frac{(\lambda_i - \mu_i)^2}{2 \cdot \sigma_i^2} \), hence \(\frac{\partial^2 \psi}{\partial \lambda_i^2} = \frac{1}{\sigma_i^2} \), and \(\sigma_i^2 = \left(\frac{\partial^2 \psi}{\partial \lambda_i^2} \right)^{-1} \).

- For \(\psi(\lambda_i) = - \sum_{i=1}^{n} n_i \cdot \ln(\lambda_i) + \sum_{i=1}^{n} n_i \cdot \lambda_i \cdot t_i \), we get

 \[\frac{\partial^2 \psi}{\partial \lambda_i^2} = n_i / \lambda_i^2 \], so the standard deviation is \(\sigma_i = \frac{\lambda_i}{\sqrt{n_i}} \).

- So, the relative accuracy of the estimate \(\lambda_i \) is equal to

 \[\frac{\sigma_i}{\lambda_i} = \frac{1}{\sqrt{n_i}}. \]
6. Confidence Interval

- Based on λ_i and σ_i, we can form an interval that contains the actual failure rate with a given confidence:

$$[\lambda_i - k_0 \cdot \sigma_i, \lambda_i + k_0 \cdot \sigma_i] = \left[\lambda_i \cdot \left(1 - \frac{k_0}{\sqrt{n_i}}\right), \lambda_i \cdot \left(1 + \frac{k_0}{\sqrt{n_i}}\right)\right].$$

- We take $k_0 = 2$ if we want 90% confidence.
- We take $k_0 = 3$ if we want 99.9% confidence.
- We take $k_0 = 6$ if we want $99.9999999\% = 1 - 10^{-8}$ confidence.

- Example: for $n_i = 5$ and $k_0 = 2$, the confidence interval is approximately equal to $[0, 2\lambda_i]$.

- In other words, the actual failure rate can be 0 or it can be twice higher than what we estimated.

- Thus, if we only have 5 measurements, we cannot extract much information about the actual failure rate.
7. New Approach: Main Idea

- Experts provide estimates e_i for the failure rates λ_i.
- Expert over-estimate, i.e., $\lambda_i = k_i \cdot e_i$ for some $k_i < 1$.
- As usual, it is reasonable to assume that k_i are normally distributed, with unknown k and σ^2:
 \[
 \frac{1}{\sqrt{2 \cdot \pi \cdot \sigma}} \cdot \exp \left(-\frac{(k_i - k)^2}{2\sigma^2} \right).
 \]
- Approximation errors $k_i - k$ corresponding to different components are independent.
- We then find λ_i, k, and σ from the Maximum Likelihood Method $\rho \rightarrow \max$:
 \[
 \rho = \left[\prod_{i=1}^{n} \prod_{j=1}^{n_i} (k_i \cdot e_i \cdot \exp(- (k_i \cdot e_i \cdot t_{ij}))) \right] \cdot \rho', \text{ where}
 \]
 \[
 \rho' = \prod_{i=1}^{n} \frac{1}{\sqrt{2 \cdot \pi \cdot \sigma}} \cdot \exp \left(-\frac{(k_i - k)^2}{2\sigma^2} \right).
 \]
8. Fuzzy Interpretation

- Reminder: \[\rho = \left[\prod_{i=1}^{n} \prod_{j=1}^{n_i} (k_i \cdot e_i \cdot \exp(- (k_i \cdot e_i \cdot t_{ij}))) \right] \cdot \rho' , \]
 where \(\rho' = \prod_{i=1}^{n} \frac{1}{\sqrt{2 \cdot \pi \cdot \sigma}} \cdot \exp \left(- \frac{(k_i - k)^2}{2\sigma^2} \right) . \)

- This formula is based on the assumptions of
 - Gaussian distribution, and
 - independence.

- A similar formula can be obtained if we simply use:
 - Gaussian membership functions, and
 - a product t-norm \(f_\&(a, b) = a \cdot b \) to combine information about different components.

- In this case, we do not need independence assumptions.
9. Analysis of the Optimization Problem

• Reminder: \[\rho = \left[\prod_{i=1}^{n} \prod_{j=1}^{n_i} (k_i \cdot e_i \cdot \exp(-k_i \cdot e_i \cdot t_{ij})) \right] \cdot \rho', \]

where \[\rho' = \prod_{i=1}^{n} \frac{1}{\sqrt{2 \cdot \pi \cdot \sigma}} \cdot \exp \left(-\frac{(k_i - k)^2}{2\sigma^2} \right). \]

• We reduce \(\rho \to \max \) to \(\psi \overset{\text{def}}{=} -\ln(\rho) \to \min \) and use \(t_i \):

\[\psi = -\sum_{i=1}^{n} n_i \cdot \ln(k_i) + \sum_{i=1}^{n} k_i \cdot n_i \cdot e_i \cdot t_i + n \cdot \ln(\sigma) + \sum_{i=1}^{n} \frac{(k_i - k)^2}{2\sigma^2}. \]

• Equating derivatives w.r.t. \(\sigma, k, \) and \(k_i \) to 0, we get:

\[\sigma^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (k_i - k)^2; \quad k = \frac{1}{n} \cdot \sum_{i=1}^{n} k_i; \]

\[\frac{-n_i}{k_i} + n_i \cdot e_i \cdot t_i + \frac{k_i - k}{\sigma^2} = 0. \]
10. Analysis of the Problem (cont-d)

- We get:
 \[k = \frac{1}{n} \cdot \sum_{i=1}^{n} k_i; \quad \sigma^2 = \frac{1}{n} \cdot \sum_{i=1}^{n} (k_i - k)^2; \]
 \[-\frac{n_i}{k_i} + n_i \cdot e_i \cdot t_i + \frac{k_i - k}{\sigma^2} = 0. \]

- Multiplying both sides by \(k_i \), we get a quadratic equation, with solution
 \[k_i = \frac{k - n_i t_i e_i \sigma^2 + \sqrt{(k - n_i t_i e_i \sigma^2)^2 + 4n_i \sigma^2}}{2}. \]

- Thus, we start with some initial values \(k_i^{(0)} \), and perform the following iterations until the process converges:
 - update \(k \) to \(\frac{1}{n} \cdot \sum_{i=1}^{n} k_i \) and \(\sigma^2 \) to \(\frac{1}{n} \cdot \sum_{i=1}^{n} (k_i - k)^2; \)
 - update \(k_i \) to \(\frac{k - n_i t_i e_i \sigma^2 + \sqrt{\cdots}}{2} \).
11. Resulting Accuracy of This Estimate

- The st. dev. \(\sigma_i \) of the estimate \(k_i \) is
 \[\sigma_i^2 = \left(\frac{\partial^2 \psi}{\partial k_i^2} \right)^{-1}. \]

- Here, \(\psi = -\sum_{i=1}^{n} n_i \cdot \ln(k_i) + \sum_{i=1}^{n} k_i \cdot n_i \cdot e_i \cdot t_i + n \cdot \ln(\sigma) + \sum_{i=1}^{n} \frac{(k_i - k)^2}{2\sigma^2} \), so
 \[\frac{\partial^2 \psi}{\partial k_i^2} = \frac{n_i}{k_i^2} + \frac{1}{\sigma^2}. \]

- Thus,
 \[\frac{\sigma_i}{k_i} = \frac{1}{\sqrt{n_i + k_i^2 \cdot \sigma^{-2}}}. \]

- The relative accuracy does not change if we multiply the \(k_i \) by \(e_i \), i.e., go from \(k_i \) to \(\lambda_i = k_i \cdot e_i \).

- So, the confidence interval for \(\lambda_i \) is:
 \[\left[\lambda_i \cdot \left(1 - \frac{k_0}{\sqrt{n_i + k_i^2 \cdot \sigma^{-2}}} \right), \lambda_i \cdot \left(1 + \frac{k_0}{\sqrt{n_i + k_i^2 \cdot \sigma^{-2}}} \right) \right]. \]
12. Resulting Algorithm

- **Given:**
 - For each of component $i = 1, \ldots, n$, we have n_i observed times-between-failures t_{i1}, \ldots, t_{in_i}.
 - We also have expert estimates e_1, \ldots, e_n for the failure rate of each component.

- **Pre-processing:**
 - First, for each component, we compute the average of the observed times-between-failures
 \[
 t_i = \frac{1}{n_i} \cdot \sum_{j=1}^{n_i} t_{ij}.
 \]
 - Then, we compute the first approximation $k_i^{(0)}$ to the auxiliary parameter k_i: $k_i^{(0)} = \frac{1}{e_i \cdot t_i}$.

13. Algorithm (cont-d)

- **Iterations:** on each iteration p, $p = 0, 1, 2, \ldots$, based on the current approximations $k_i^{(p)}$, we compute:

 $$k_i^{(p)} = \frac{1}{n} \cdot \sum_{i=1}^{n} k_i^{(p)}; \quad (\sigma^2)^{(p)} = \frac{1}{n} \cdot \sum_{i=1}^{n} (k_i^{(p)} - k^{(p)})^2;$$

 $$z = k_i^{(p)} - n_i \cdot t_i \cdot e_i \cdot (\sigma^2)^{(p)}; \quad k_i^{(p+1)} = \frac{z + \sqrt{z^2 + 4n_i \cdot (\sigma^2)^{(p)}}}{2}.$$

- We stop when $|k_i^{(p+1)} - k_i^{(p)}| \leq \varepsilon \cdot k_i^{(p)}$ for all i.

- Once we have $k_i = k_i^{(p)}$, we then estimate λ_i as $k_i \cdot e_i$, and the corresponding confidence interval as

 $$\left[\lambda_i \cdot \left(1 - \frac{k_0}{\sqrt{n_i + k_i^2 \cdot \sigma^{-2}}} \right), \lambda_i \cdot \left(1 + \frac{k_0}{\sqrt{n_i + k_i^2 \cdot \sigma^{-2}}} \right) \right].$$
14. Discussion.

- **Reminder:** we get the following confidence interval:

\[
\left[\lambda_i \cdot \left(1 - \frac{k_0}{\sqrt{n_i + k_i^2 \cdot \sigma^{-2}}} \right) \right., \ \lambda_i \cdot \left(1 + \frac{k_0}{\sqrt{n_i + k_i^2 \cdot \sigma^{-2}}} \right])
\]

- The difference between this confidence interval and the confidence interval based only on observations is that:
 - we replace \(n_i \) in the denominator
 - with a larger value \(n_i + k_i^2 \cdot \sigma^{-2} \).

- Thus, the new confidence interval is indeed narrower: expert estimates help.

- When the values \(k_i \) are very close and \(\sigma \approx 0 \), this denominator tends to \(\infty \).

- So, we get very narrow confidence intervals for \(\lambda_i \) even when we have the same small number of observations.
15. Acknowledgments

• This work was supported by a contract from the Boeing Company.

• It is also partly supported:
 – by the National Science Foundation grants HRD-0734825 and DUE-0926721 and
 – by Grant 1 T36 GM078000-01 from the National Institutes of Health.