From Fuzzification and Intervalization to Anglification: A New 5D Geometric Formalism for Physics and Data Processing

Scott A. Starks and Vladik Kreinovich
NASA Pan-American Center for Earth and Environmental Studies (PACES)
University of Texas at El Paso, El Paso, TX 79968, USA
sstarks@utep.edu, vladik@utep.edu
1. **Data Processing: Geometric Interpretation is Needed**

- *Data* to be *processed*: several real numbers x_1, \ldots, x_n.

- *Geometric interpretation*: the sequence (x_1, \ldots, x_n) is an n-D vector – an element of an n-D space.

- *Resulting visualization*:
 - level sets of Gaussian distribution are ellipsoids;
 - linear relation is a plane, etc.

- *Problem*: we can only use geometric intuition for ≤ 3 (or 4).

- *Objective*: to have similar geometric techniques for larger n.

- *Idea*: look at physics where multi-dimensional geometries are currently used.
2. **Physics: 5D Geometry is Useful**

- General relativity (GRT) explained gravitation by combining space and time into a 4D space.
- *Question:* can other dimensions explain other physics?
- *Success* (Th. Kaluza, O. Klein, 1921): 5D GRT
 - gravitation for \(4 \times 4\) components \(g_{ij}\) of the metric,
 - \(g^{5i}\) satisfy Maxwell’s equations (if \(g_{55} = \text{const}\)).
- *Problem:* no physical explanation of 5-th dimension.
- *Solution* (A. Einstein, P. Bergmann, 1938): 5th dimension forms a tiny circle, so we don’t notice it.
- *This is still relevant:* this idea is standard in particle physics, where
 - space is 10- or 11-dimensional,
 - all dimensions except the first four are tiny.
3. The Physical Model is Unusual, But This Un-Usualness is Appropriate for Data Processing

- **Problem:** the standard multi-D physical model is unusual geometrically:
 - the space is a cylinder,
 - not a plane anymore.

- **Observation:** this feature is, however, interestingly related to data processing:
 - some measured data are angles, and
 - angles do form a circle.

- **Conclusion:** these geometric ideas can be directly applied to data processing.
4. **Geometry Needed**

- **Problem:** Kaluza-Klein theory requires several additional physical formulas w/o geometric meaning.
- **Objective:** we show that these formulas can be geometrically explained.
- First, the assumption $g_{55} = \text{const}$ is artificial.
- Second, since only 4 coordinates have a physical sense, the terms $g_{5i} \cdot \Delta x^5 \cdot \Delta x^i$ in the distance
 \[\Delta s^2 = \sum_{i=1}^{5} \sum_{j=1}^{5} g_{ij} \cdot \Delta x_i \cdot \Delta x_j \]
 are not physical.
- Third, the observed values of physical fields do not depend on x^5 (cylindricity).
- Rumer interpreted x^5 as action $S = \int L \, dx \, dt$.
- Fourth, action transformations $S \to S + f(x^i)$ should be geometrically meaningful.
5. **Natural Idea and Its Problems**

- **Main difference:**
 - in Einstein-Bergmann's 5D model we have a cylinder $K = \mathbb{R}^4 \times S^1$ (K for Kaluza)
 - in a standard 4D space, we have a linear space.

- **Idea:** modify standard geometry by substituting K instead of \mathbb{R}^4 into all definitions.

- **Problem:** we need linear space structure, i.e., addition and multiplication by a scalar.

- We still have addition in K.

- However, multiplication is not uniquely defined for angle-valued variables:
 - we can always interpret an angle as a real number modulo the circumference,
 - but then, e.g., $0 \sim 2\pi$ while $0.6 \cdot 0 \not\sim 0.6 \cdot 2\pi$.

6. What We Suggest

- **We need**: a real-number representation of an angle variable.
- **Natural idea**: an angle is not as a *single* real number.
- It is a set \(\{ \alpha + n \cdot 2\pi \} \) of all possible real numbers that correspond to the given angle.
- **Similar ideas**: interval and fuzzy arithmetic.
- **Natural definition**: element-wise operations, e.g.,
 \[
 A + B = \{ a + b \mid a \in A, b \in B \}.
 \]
- **Other ideas**:
 - tensors are linear mappings that preserve the structure of such sets;
 - a tensor field is differentiable if its derivatives are also consistent with this structure.
7. Resulting Formalism: Idea

- In mathematical terms, the resulting formalism is equivalent to the following:
- We start with the space K which is not a vector space (only an Abelian group).
- We reformulate standard definitions of vector and tensor algebra and tensor analysis and apply them to K:
 - K-vectors are defined as elements of K;
 - K-covectors as elements of the dual group,
 - etc.
- All physically motivated conditions turn out to be natural consequences of this formalism.
8. **K-Vectors**

- In the traditional 4-D space-time R^4, we can define a *vector* as simply an element of R^4.
- In our case, instead of 4-D space-time R^4, we have a 5-D space-time $K \overset{\text{def}}{=} R^4 \times S^1$.
- S^1 is a circle of a small circumference $h > 0$ – i.e., equivalently, a real line in which two numbers differing by a multiple of h describe the same point: $(x^1, \ldots, x^4, x^5) \sim (x^1, \ldots, x^4, x^5 + k \cdot h)$.
- Thus, it is natural to define K-*vectors* as simply elements of K.
- On R^4, there are two operations: $a + b$ and λ: $a \rightarrow \lambda \cdot a$. Thus, R^4 is a *linear space*.
- On K we only have addition, so K is only an *Abelian group*.
9. Towards K-Covectors

- Vectors describe location x, covectors p describe momentum.
- Heisenberg’s principle $\Delta x \cdot \Delta p \geq \hbar$: if we know the momentum, then we have no information about the location.
- Corollary: a state with a definite momentum p does not change under shift $x \rightarrow x + t$.
- In QM, a state is a wave function $\psi(x)$.
- Only probabilities $|\psi|^2$ are observables, so ψ and $\exp(i \cdot \alpha) \cdot \psi$ is the same state.
- Conclusion: $\psi(x + t) = \varphi(t) \cdot \psi(x)$ for $|\varphi(t)| = 1$.
- $\psi(t) = \varphi(t) \cdot \psi(0)$, so we must find $\varphi(t)$.
- $\varphi(t + s) = \varphi(t) \cdot \varphi(s) - \text{homomorphism } R \rightarrow S^1$.
10. \(K \)-Covectors

- **Definition:** a \(K \)-covector is a continuous homomorphism from \(K \) to \(S^1 \).

- By a sum of two covectors we mean the product of the corresponding homomorphisms.

- The set of all \(K \)-covectors is thus a dual group \(K^* = R^4 \times Z \) to \(K \).

- It is known that elements of \(K^* \) have the form

 \[
 \exp(i \cdot p \cdot x),
 \]

 where \(p = (p_1, \ldots, p_4, p_5) \) and \(p_5 \) is an multiple of \(1/h \).

- \(K \)-vectors are vectors \(x = (x_1, \ldots, x_5) \) of \(R^5 \) modulo \(x \sim x' \) if \(x_5 - x'_5 = k \cdot h \) for some integer \(k \).

- \(K \)-covectors are linear mappings that are consistent with the above structure: \(x \sim x' \) implies \(p \cdot x \sim p \cdot x' \).
11. **K-Tensors: Definitions**

- **Tensors** are multi-linear mappings:
 \[
 x^{i_1}, \ldots, y^{i_p}, z_{j_1}, \ldots, u_{j_q} \rightarrow \\
 \sum_{i_1, \ldots, i_p, j_1, \ldots, j_q} t^{j_1 \ldots j_q}_{i_1 \ldots i_p} \cdot x^{i_1} \cdot \ldots \cdot y^{i_p} \cdot z_{j_1} \cdot \ldots \cdot u_{j_q}.
 \]

- A **K-tensor** is a multi-linear mapping that is consistent with the equivalence sets structure, i.e., for which
 - if \(x \sim x', \ldots, y \sim y' \),
 - then \(t(x, \ldots, y, z, \ldots, u) \sim t(x', \ldots, y', z, \ldots, u) \).

- Two multi-linear mappings \(t \) and \(t' \) describe the same **K-tensor** if
 \[
 t(x, \ldots, y, z, \ldots, u) \sim t'(x, \ldots, y, z, \ldots, u)
 \]
 for all \(x, \ldots, y, z, \ldots, u \).
12. **K-Tensors: Main Result**

- In a K-tensor, of all the components in which one of the lower indices is 5,
 - only a component $t^5...5$ can be non-zero, and
 - this component can only take values $2 \cdot \pi \cdot h^{q-1} \cdot k$ for some integer k.

- Two sets of components $t...5...$ and $s...5...$ define the same K-tensor if and only if:
 - all their components coincide,
 - with a possible exception of components $t^5...5$ and $s^5...5$ which may differ by $2 \cdot \pi \cdot h^q \cdot k$ for an integer k.
13. Explaining the Condition $g_{55} = \text{const}$ and the Fact that Metric Does Not Depend on x^5

- For g_{ij}, the above result implies that $g_{55} = g_{5i} = 0$.
- Thus, the above geometric formalism explains the first two physical assumptions that we wanted to explain:
 - that $g_{55} = 0$, and
 - that the distance $\Delta s^2 = \sum_{i=1}^{5} \sum_{j=1}^{5} g_{ij} \cdot \Delta x_i \cdot \Delta x_j$ between the two points x and $x + \Delta x$ only depends on their first 4 coordinates.

- **Definition:** a K-tensor field $t^{j_1 \ldots j_q}_{i_1 \ldots i_p}$ is differentiable if its gradient $\partial t^{j_1 \ldots j_q}_{i_1 \ldots i_p} / \partial x^m$ is also a K-tensor field.

- **Theorem:** The K-tensor field is differentiable if and only if:
 - all its components $t^{\ldots \ldots}_{\ldots \ldots}$ do not depend on x^5,
 - with the possible exception of the component $t^{5 \ldots 5}$ which may have the form $2 \cdot \pi \cdot h^{q-1} \cdot x^5 + f(x_1, \ldots, x_4)$.

- **Conclusion:** for all the components t (except for angular-valued ones), we have the cylindricity condition $\partial t^{\ldots \ldots} / \partial x^5 = 0$.

- Thus, the cylindricity conditions is also explained by the geometric model.
15. Coordinate Transformations

- **Observation:** in the traditional geometry, linear coordinates transformations are continuous automorphisms of the additive group $K_0 = \mathbb{R}^4$.

- **Definition:** a K-linear transformation is a continuous automorphism of K.

- **Description:**

$$x^5 \rightarrow \pm x^5 + \sum_{i=1}^{4} A_i \cdot x^i, \quad x^i \rightarrow \sum_{j=1}^{4} b^i_j x^j, \quad (i \leq 4).$$

- A smooth transformation $s : K \rightarrow K$ is *admissible* iff all tangent transformations are K-linear.

- **Description:** every admissible transformation has the form $x^5 \rightarrow \pm x^5 + f(x^1, \ldots, x^4), \quad x^i \rightarrow f^i(x^1, \ldots, x^4)$.

- **Conclusion:** we have exactly 4D transformations and Rumer’s transformations $x^5 \rightarrow x^5 + f(x^1, \ldots, x^4)$.
16. Potential Applications to Data Processing

For example, a natural analog of Gaussian distribution is \(\exp(-\sum a_{ij} x^i x^j) \) for a \(K \)-tensor \(a_{ij} \).
17. Acknowledgments

The research was partially supported:

- by NASA under cooperative agreement NCC5-209,
- by NSF grants EAR-0112968, EAR-0225670, and EIA-0321328, and
- by NIH grant 3T34GM008048-20S1.

The authors are thankful:

- to Professor L. Zadeh for describing a general scheme behind fuzzification and intervalization, and
- to all the participants of the special section of the Montreal meeting of the American Mathematical Society for valuable comments.