Coming Up with a Good Question Is Not Easy: A Proof

Joe Lorkowski1, Luc Longpré1, Olga Kosheleva2, and Salem Benferhat3

Departments of 1Computer Science and 2Teacher Education
University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA
lorkowski@computer.org, longpre@utep.edu, olgak@utep.edu

3Centre de Recherche en Informatique de Lens CRIL
Université d’Artois, F62307 Lens Cedex, France
benferhat@cril.univ-artois.fr
1. Formulation of the Problem

- Even after a very good lecture, some parts of the material remain not perfectly clear.

- A natural way to clarify these parts is to ask questions to the lecturer.

- Ideally, we should be able to ask a question that immediately clarifies the desired part of the material.

- Coming up with such good questions is a skill that takes a long time to master.

- Even for experienced people, it is not easy to come up with a question that maximally decreases uncertainty.

- In this talk, we prove that the problem of designing a good question is computationally difficult (NP-hard).
2. Towards Describing the Problem in Precise Terms: General Case

- A complete knowledge about an area means that we have the full description.
- Uncertainty means that several different variants v_1, v_2, \ldots, v_n are consistent with our knowledge.
- A “yes”-‘’no” question is a question an answer to which eliminates some possible variants:
 - if the answer is “yes”, then we are limited to variants $v \in Y \subset \{v_1, \ldots, v_n\}$ consistent with “yes”;
 - if the answer is “no”, then we are limited to variants $v \in N \subset \{v_1, \ldots, v_n\}$ consistent with “no”.
- These two sets are complements to each other.
- For the question “is $v = v_1$?”, $Y = \{v_1\}$ and $N = \{v_2, \ldots, v_n\}$.
3. Case of Probabilistic Uncertainty

- In the probabilistic approach, we assign a probability $p_i \geq 0$ to each of the possible variants: $\sum_{i=1}^{n} p_i = 1$.

- The probability p_i is the frequency with which the i-th variant was true in similar previous situations.

- In the probabilistic case, Shannon’s entropy S describes the amount of uncertainty:

$$S = - \sum_{i=1}^{n} p_i \cdot \ln(p_i).$$

- We want to select a question that maximizes the expected decrease in uncertainty.
4. How the Answer Changes the Entropy

- If the answer is “yes”, then for \(i \in N \), we get \(p'_i = 0 \), and for \(i \in Y \), we get
\[
p'_i = p(i \mid Y) = \frac{p_i}{p(Y)}, \quad \text{where } p(Y) = \sum_{i \in Y} p_i.
\]
- So, entropy changes to \(S' = -\sum_{i \in Y} p'_i \cdot \ln(p'_i) \).

- If the answer is “no”, then for \(i \in Y \), we get \(p''_i = 0 \), and for \(i \in N \), we get
\[
p''_i = p(i \mid N) = \frac{p_i}{p(N)}, \quad \text{where } p(N) = \sum_{i \in N} p_i.
\]
- So, entropy changes to \(S'' = -\sum_{i \in N} p''_i \cdot \ln(p''_i) \).

- We want to maximize the expected decrease in entropy:
\[
p(Y) \cdot (S - S') + p(N) \cdot (S - S'').
\]
5. Main Result: Probabilistic Case

- Our main result is that the problem of coming up with the best possible question is NP-hard.
- What is NP-hard: a brief reminder.
- In many real-life problems, we are looking for a string that satisfies a certain property.
- For example, in the subset sum problem:
 - we are given positive integers \(s_1, \ldots, s_n \) representing the weights, and
 - we need to divide these weights into two groups with exactly the same weight.
- So, we need to find a set \(I \subseteq \{1, \ldots, n\} \) s.t.

\[
\sum_{i \in I} s_i = \frac{1}{2} \cdot \left(\sum_{i=1}^{n} s_i \right).
\]

- The desired set I can be described as a sequence of n 0s and 1s: the i-th term is 1 if $i \in I$ and 0 if $i \notin I$.

- In principle, we can solve each such problem by simply enumerating all possible strings.

- For example, in the above case, we can try all 2^n possible subsets of the set \(\{1, \ldots, n\} \).

- This way, if there is a set I with the desired property, we will find it.

- The problem is that for large n, the number 2^n of computational steps becomes unreasonably large.

- For example, for $n = 300$, the resulting computation time exceeds lifetime of the Universe.

- Can we solve such problems in feasible time, i.e., in time \leq a polynomial of the size of the input?

- It is not known whether all exhaustive-search problems can be thus solved – this is the famous $P=\text{NP}$ problem.
- Most computer science researchers believe that some exhaustive-search problems cannot be feasibly solved.
- What is known is that some problems are the hardest (NP-hard) in the sense that
 - any exhaustive-search problem
 - can be feasibly reduced to this problem.
- This means that, unless $P=\text{NP}$, this particular problem cannot be feasibly solved.
- The above subset sum problem has been proven to be NP-hard, as well as many other similar problems.
8. How Can We Prove NP-Hardness

- A problem is NP-hard if every other exhaustive-search problem \(Q \) can be reduced to it.
- So, if we know that a problem \(P_0 \) is NP-hard, then every problem \(Q \) can be reduced to it; thus,
 - if \(P_0 \) can be reduced to our problem \(P \),
 - then, by transitivity, any problem \(Q \) can be reduced to \(P \),
 - i.e., \(P \) is indeed NP-hard.
- Thus, to prove that \(P \) is NP-hard, it is sufficient to reduce a known NP-hard problem \(P_0 \) to \(P \).
- We will prove that the subset sum problem \(P_0 \) (which is known to be NP-hard) can be reduced to \(P \).
9. Simplifying the Expression for Entropy Decrease

- For “yes”-answer, \(S' = -\sum_{i \in Y} \frac{p_i}{p(Y)} \cdot \ln \left(\frac{p_i}{p(Y)} \right) \).

- Thus, \(S' = -\frac{1}{p(Y)} \cdot \left(\sum_{i \in Y} p_i \cdot (\ln(p_i) - \ln(p(Y))) \right) \).

- So, \(S' = -\frac{1}{p(Y)} \cdot \left(\sum_{i \in Y} p_i \cdot \ln(p_i) \right) + \ln(p(Y)) \).

- Similarly, \(S'' = -\frac{1}{p(N)} \cdot \left(\sum_{i \in N} p_i \cdot \ln(p_i) \right) + \ln(p(N)) \).

- So, \(\bar{S}(Y) = p(Y) \cdot (S - S') + p(N) \cdot (S - S'') = p(Y) \cdot \ln(p(Y)) + p(N) \cdot \ln(p(N)) \).

- This expression is known to be the largest when \(p(Y) = p(N) = 0.5 \).
10. Reduction of Subset Sum to Our Problem

• Let us assume that we are given \(n \) positive integers \(s_1, \ldots, s_n \).

• Then, we can form \(n \) probabilities \(p_i \) defined as \(p_i = \frac{s_i}{\sum_{j=1}^{n} s_j} \).

• If we can find a set \(Y \) for which \(p(Y) = \sum_{i \in Y} p_i = 0.5 \), then \(\sum_{i \in Y} s_i = 0.5 \cdot \sum_{j=1}^{n} s_j \).

• This is exactly the solution to the subset sum problem.

• Vice versa, if we have a set \(Y \) for which the above equality is satisfied, then for \(p_i \) we get \(p(Y) = 0.5 \).

• The reduction shows that the problem of coming up with a good question is indeed NP-hard.
11. Case of Fuzzy Uncertainty

- In the fuzzy approach, we assign, to each variant i, its degree of possibility.
- The resulting fuzzy values are usually normalized, so that $\max_i \mu_i = 1$.
- One of the most widely used ways to gauge uncertainty is to use an expression $S = \sum_{i=1}^{n} f(\mu_i)$.
- Here, $f(z)$ is a strictly increasing continuous function for which $f(0) = 0$.
- This is the amount that we want to decrease by asking an appropriate question.
12. How Degrees Change After a “Yes” or “No” Answer?

- In the *numerical approach*, we normalize the remaining degree so that \(\max = 1 \), i.e., take \(\mu'_i = \frac{\mu_i}{\max_j \mu_j} \).

- In the *ordinal approach*, we raise the largest values to 1, while keeping the other values unchanged:
 \[
 \mu'_i = 1 \text{ if } \mu_i = \max_{j \in Y} \mu_j; \quad \mu'_i = \mu_i \text{ if } \mu_i < \max_{j \in Y} \mu_j.
 \]

- Based on the new values \(\mu'_i \), we compute the new complexity value \(S' = \sum_{i \in Y} f(\mu'_i) \).

- Similarly, after the “no” answer, we get \(S'' = \sum_{i \in Y} f(\mu''_i) \).

- We want to maximize the guaranteed decrease of uncertainty
 \[
 \overline{S} = \min(S - S', S - S'').
 \]
13. Main Result: Fuzzy Case

• Our main result is that the problem of coming up with the best possible question is NP-hard.

• This is true for both approaches: numerical and ordinal.

• Similarly to the probabilistic case, we prove this result by reducing the subset sum problem to this problem.

• Let s_1, \ldots, s_m be positive integers.

• To solve the corresponding subset sum problem, let us:
 – select a small number $\varepsilon > 0$ and
 – consider the following $n = m + 2$ degrees:
 \[\mu_i = f^{-1}(\varepsilon \cdot s_i) \text{ for } i \leq m \text{ and } \mu_{m+1} = \mu_{m+2} = 1. \]

- For these values μ_i, we have three possible relations between the set Y and the variants $m + 1$ and $m + 2$:
 1. Y contains both these variants;
 2. Y contains none of these two variants, and
 3. Y contains exactly one of these two variants.

- Here, $f(S) = 2f(1) + O(\varepsilon)$.
 1. $f(S') = 2f(1) + O(\varepsilon)$, so $\overline{S} \leq S - S' = O(\varepsilon)$.
 2. $f(S'') = 2f(1) + O(\varepsilon)$, so $\overline{S} \leq S - S'' = O(\varepsilon)$.
 3. $f(S') = f(1) + O(\varepsilon)$ and $f(S'') = f(1) + O(\varepsilon)$, so $\overline{S} = f(1) + O(\varepsilon) \gg O(\varepsilon)$.

- Thus, the maximum of \overline{S} is attained in the third case, when $\overline{S} = f(1) - \varepsilon \cdot \max \left(\sum_{i \in Y, i \leq m} s_i, \sum_{i \in N, i \leq m} s_i \right)$.
Proof (cont-d)

- The maximum of \overline{S} is attained in the third case, when
 \[
 \overline{S} = f(1) - \varepsilon \cdot \max \left(\sum_{i \in Y, i \leq m} s_i, \sum_{i \in N, i \leq m} s_i \right).
 \]
- The largest value is attained when
 \[
 \sum_{i \in Y, i \leq m} s_i = \sum_{i \in N, i \leq m} s_i = \frac{1}{2} \cdot \left(\sum_{i=1}^{m} s_i \right).
 \]
- This is exactly the solution to the subset problem.
- So, in both fuzzy approaches, the problem of coming up with a good question is indeed NP-hard.
16. What Happens in the Interval-Valued Fuzzy Case

- In many practical situations, an expert is uncertain about his/her degree of uncertainty.

- It is thus reasonable to describe the expert’s degree of certainty by a subinterval $\left[\underline{\mu}, \overline{\mu}\right] \subseteq [0, 1]$.

- Such interval-valued fuzzy techniques have indeed led to many useful applications.

- The usual fuzzy logic is a particular case of interval-valued fuzzy logic, when $\underline{\mu} = \overline{\mu}$.

- It is easy to prove that if a particular case of a problem is NP-hard, the whole problem is also NP-hard.

- Thus, the problem of selecting a good question is NP-hard for interval-valued fuzzy uncertainty as well.