Sometimes, It Is Beneficial to Process Different Types of Uncertainty Separately

Chrysostomos D. Stylios1, Andrzej Pownuk2, and Vladik Kreinovich2

1Laboratory of Knowledge and Intelligent Computing
Department of Computer Engineering
Technological Educational Institute of Epirus
47100 Kostakioi, Arta, Greece, stylios@teiep.gr

2Computational Science Program
University of Texas at El Paso, 500 W. University
El Paso, Texas 79968, USA
ampownuk@utep.edu, vladik@utep.edu
1. Need for Data Processing

- One of the main objectives of science is to predict future values \(y \) of physical quantities:
 - in meteorology, we need to predict future weather;
 - in airplane control, we need to predict the location and the velocity of the plane under current control.

- To make this prediction:
 - we need to know the relation \(y = f(x_1, \ldots, x_n) \) between \(y \) and related quantities \(x_1, \ldots, x_n \);
 - then, we measure or estimate \(x_1, \ldots, x_n \);
 - finally, we use the results \(\tilde{x}_i \) of measurement (or estimation) to compute an estimate
 \[
 \tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n).
 \]

- This computation of \(\tilde{y} \) is an important case of data processing.
2. Need to Take Uncertainty into Account

- Measurements are never absolutely accurate, and expert estimates are even less accurate.

- As a result, the estimates \tilde{x}_i are, in general, different from the actual (unknown) values x_i.

- Therefore, the estimate \tilde{y} is also only approximate.

- In practice, it is desirable to know how accurate is this estimate \tilde{y}.

- To find this out, we need to take into account the accuracy of the estimates \tilde{x}_i.

- For measurements, we usually know the upper bound Δ_i on the absolute value of the measurement error:

 $$|\Delta x_i| \leq \Delta_i,$$

 where $\Delta x_i \overset{\text{def}}{=} \tilde{x}_i - x_i$.

- The upper bound Δ_i is usually provided by the manufacturer of the measurement instrument.
3. Taking Uncertainty into Account (cont-d)

- Once we know Δ_i and \tilde{x}_i, then we know that the actual value x_i is located in the interval $[\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$.

- To gauge the accuracy of expert estimates, it is reasonable to use fuzzy techniques, i.e., to describe:
 - for each possible value x_i,
 - the degree $\mu_i(x_i)$ to which x_i is possible.

- Sometimes, we also know the probabilities of different $\Delta x_i \in [-\Delta_i, \Delta_i]$; we plan to analyze this in the future.

- The prediction model is often approximate:
 \[y = f(x_1, \ldots, x_n) + \Delta m, \text{ with } \Delta m \neq 0. \]

- Sometimes, we know the upper bound Δ_m on the model inaccuracy Δm: $|\Delta m| \leq \Delta_m$.

- In other cases, we know a membership function $\mu_m(\Delta m)$ that describes Δm.
4. Measurement and Estimation Inaccuracies Are Usually Small

• In many practical situations, the measurement and estimation inaccuracies Δx_i are relatively small.

• Then, we can safely ignore terms which are quadratic (or of higher order) in terms of Δx_i:

$$\Delta y = \tilde{y} - y = f(\tilde{x}_1, \ldots, \tilde{x}_n) - f(\tilde{x}_1 - \Delta x_1, \ldots, \tilde{x}_n - \Delta x_n) - \Delta m =$$

$$\sum_{i=1}^{n} c_i \cdot \Delta x_i - \Delta m, \text{ where } c_i = \frac{\partial f}{\partial x_i}.$$

• If needed, the derivative can be estimated by numerical differentiation

$$c_i \approx \frac{f(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i + h, \tilde{x}_{i+1}, \ldots, \tilde{x}_n) - \tilde{y}}{h}.$$
5. Estimating Accuracy of Data Processing

- The value \(\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i - \Delta m \) is the largest when each term is the largest, so \(\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i + \Delta_m \).

- In the fuzzy case, the similar formula holds for the \(\alpha \)-cuts, for every \(\alpha \): \(\alpha \Delta = \sum_{i=1}^{n} |c_i| \cdot \alpha \Delta_i + \alpha \Delta_m \).

- Experts cannot describe their degrees of confidence \(\alpha \) with too much accuracy.

- Usually, it is sufficient to consider only eleven values \(\alpha = 0.0, \alpha = 0.1, \alpha = 0.2, \ldots, \alpha = 0.9, \text{ and } \alpha = 1.0 \).

- Thus, we need to apply the above formula eleven times.

- This is in line with the fact we usually divide each quantity into \(7 \pm 2 \) categories (Miller’s “7 ± 2 Law”).

- So, it is sufficient to have at least 9 different categories.
6. Cases for Which Simplification Is Possible

- Sometimes, all membership functions are “of the same type”: \(\mu(z) = \mu_0(k \cdot z) \) for some symmetric \(\mu_0(z) \).

- Example: for triangular functions,
 \[
 \mu_0(z) = \max(1 - |z|, 0).
 \]

- In this case, \(\mu(z) \geq \alpha \) is equivalent to \(\mu_0(k \cdot z) \geq \alpha \), so \(\alpha \Delta_0 = k \cdot \alpha \Delta \) and \(0 \Delta_0 = k \cdot 0 \Delta \).

- Thus, \(\alpha \Delta = f(\alpha) \cdot 0\Delta \), where \(f(\alpha) = \frac{\alpha \Delta_0}{0 \Delta_0} \).

- For example, for a triangular membership function, we have \(f(\alpha) = 1 - \alpha \).

- So, if we know the type \(\mu_0 \) (hence \(f(\alpha) \)), and we know the 0-cut, we can compute all \(\alpha \)-cuts as \(\alpha \Delta = f(\alpha) \cdot 0\Delta \).

- So, if \(\mu_i(\Delta x_i) \) and \(\mu_m(\Delta m) \) are of the same type, then \(\alpha \Delta_i = f(\alpha) \cdot 0\Delta_i \) and \(\alpha \Delta_m = f(\alpha) \cdot 0\Delta_m \) for all \(\alpha \).
7. When Simplification Is Possible (cont-d)

- We know that $\alpha \Delta = \sum_{i=1}^{n} |c_i| \cdot \alpha \Delta_i + \alpha \Delta_m$.

- For $\alpha \Delta_i = f(\alpha) \cdot 0 \Delta_i$ and $\alpha \Delta_m = f(\alpha) \cdot 0 \Delta_m$, we get

$$\alpha \Delta = \sum_{i=1}^{n} |c_i| \cdot f(\alpha) \cdot 0 \Delta_i + f(\alpha) \cdot 0 \Delta_m.$$

- So, $\alpha \Delta = f(\alpha) \cdot \left(\sum_{i=1}^{n} |c_i| \cdot 0 \Delta_i + 0 \Delta_m \right) = f(\alpha) \cdot 0 \Delta$.

- Thus, if all $\mu(x)$ are of the same type $\mu_0(z)$, there is no need to compute $\alpha \Delta$ eleven times:

 - it is sufficient to compute 0Δ;

 - to find all other values $\alpha \Delta$, we simply multiply 0Δ by the factors $f(\alpha)$ corresponding to $\mu_0(z)$.

8. A More General Case

• A more general case is:
 – when we have a list of T different types of uncertainty – i.e., types of membership functions, and
 – each approximation error Δx_i consists of $\leq T$ components of the corresponding type t:
 \[
 \Delta x_i = \sum_{t=1}^{T} \Delta x_{i,t} \quad \text{and} \quad \Delta m = \sum_{t=1}^{T} \Delta m_t.
 \]

• For example:
 – type $t = 1$ may correspond to intervals (which are, of course, a particular case of fuzzy uncertainty),
 – type $t = 2$ may correspond to triangular membership functions, etc.
9. How This Case Is Processed Now

• **First stage:**

 – we use the known membership functions \(\mu_{i,t}(\Delta x_{i,t}) \)
 and \(\mu_{m,t}(\Delta m_t) \)

 – to find the memberships functions \(\mu_i(\Delta x_i) \) and
 \(\mu_m(\Delta m) \) that correspond to the sums \(\Delta x_i \) and \(\Delta m \).

• **Second stage:** we use \(\mu_i(\Delta x_i) \) and \(\mu_m(\Delta m) \) to compute
 the desired membership function \(\mu(\Delta y) \).

• **Problem:** on the second stage, we apply the above formula eleven times:

\[
\alpha \Delta = \sum_{i=1}^{n} |c_i| \cdot \alpha \Delta_i + \alpha \Delta_m.
\]
10. Our Main Idea

- We have $\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i - \Delta m$, where

$$\Delta x_i = \sum_{t=1}^{T} \Delta x_{i,t} \text{ and } \Delta m = \sum_{t=1}^{T} \Delta m_t.$$

- Thus, $\Delta y = \sum_{i=1}^{n} c_i \cdot \left(\sum_{t=1}^{T} \Delta x_{i,t} \right) - \left(\sum_{t=1}^{T} \Delta m_t \right).$

- Grouping together all the terms corr. to type t, we get $\Delta y = \sum_{t=1}^{T} \Delta y_t$, where $\Delta y_t \overset{\text{def}}{=} \sum_{i=1}^{n} c_i \cdot \Delta x_{i,t} - \Delta m_t$.

- For each t, we are combining membership functions of the same type, so it is enough to compute $0 \Delta_t$.

- Then, we add the resulting membership functions – by adding the corresponding α-cuts.
11. Resulting Algorithm

- Let \([[-0^\Delta i,t, 0^\Delta i,t]]\) and \([-0^\Delta m,t, 0^\Delta m,t]]\) be 0-cuts of the membership functions \(\mu_{i,t}(\Delta x_{i,t})\) and \(\mu_{m,t}(\Delta m_t)\).

- Based on these 0-cuts, we compute, for each type \(t\), the values \(0^\Delta = \sum_{i=1}^{n} |c_i| \cdot 0^\Delta i,t + 0^\Delta m,t\).

- Then, for \(\alpha = 0, 0.1, \ldots\), and for \(\alpha = 1.0\), we compute the values \(\alpha^\Delta t = f_t(\alpha) \cdot 0^\Delta t\).

- Finally, we add up \(\alpha\)-cuts corresponding to different types \(t\), to come up with the expression \(\alpha^\Delta = \sum_{t=1}^{T} \alpha^\Delta t\).

- Comment. We can combine the last two steps into a single step: \(\alpha^\Delta = \sum_{t=1}^{T} f_t(\alpha) \cdot 0^\Delta t\).
12. The New Algorithm Is Much Faster

- The original algorithm computed the above formula eleven times:

\[
\alpha \Delta = \sum_{i=1}^{n} |c_i| \cdot \alpha \Delta_i + \alpha \Delta_m.
\]

- The new algorithm uses the corresponding formula \(T \) times, i.e., as many times as there are types.

- All the other computations are much faster, since they do not grow with the input size \(n \).

- Thus, if the number \(T \) of different types is smaller than eleven, the new methods is much faster.

- Example: for \(T = 2 \) types (e.g., intervals and triangular \(\mu(x) \)), we get a \(\frac{11}{2} = 5.5 \) times speedup.
13. Conclusions and Future Work

- We can therefore conclude that sometimes, it is beneficial to process different types of uncertainty separately.
- Namely, it is beneficial when we have ten or fewer different types of uncertainty.
- The fewer types of uncertainty we have, the faster the resulting algorithm.
- We plan to test this idea of several actual data processing examples.
- We also plan to extend this idea to other types of uncertainty, in particular, to probabilistic uncertainty.
14. Acknowledgment

- This work was supported in part by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721.

- This work was performed when C. Stylios was a Visiting Researcher at the University of Texas at El Paso.