How to Speed Up Software Migration and Modernization: Successful Strategies Developed by Precisiating Expert Knowledge

Francisco Zapata1, Octavio Lerma2, Leobardo Valera2, and Vladik Kreinovich1,2

1Department of Computer Science
2Computational Science Program
University of Texas at El Paso
El Paso, TX 79968, USA
fazg74@gmail.com, lolerma@episd.org
leobardovalera@gmail.com, vladik@utep.edu
1. Computers Are Ubiquitous

- In many aspects of our daily life, we rely on computer systems:
 - computer systems record and maintain the student grades,
 - computer systems handle our salaries,
 - computer systems record and maintain our medical records,
 - computer systems take care of records about the city streets,
 - computer systems regulate where the planes fly, etc.

- Most of these systems have been successfully used for years and decades.

- Every user wants to have a computer system that, once implemented, can effectively run for a long time.
2. Need for Software Migration/Modernization

- Computer systems operate in a certain environment; they are designed:
 - for a certain computer hardware – e.g., with support for words of certain length,
 - for a certain operating system, programming language, interface, etc.
- Eventually, the computer hardware is replaced by a new one.
- While all the efforts are made to make the new hardware compatible with the old code, there are limits.
- As a result, after some time, not all the features of the old system are supported.
- In such situations, it is necessary to adjust the legacy software so that it will work on a new system.
3. Software Migration and Modernization Is Difficult

- At first glance, software migration and modernization sounds like a reasonably simple task:
 - the main intellectual challenge of software design is usually when we have to invent new techniques;
 - in software migration and modernization, these techniques have already been invented.
- Migration would be easy if every single operation from the legacy code was clearly explained and justified.
- The actual software is far from this ideal.
- In search for efficiency, many “tricks” are added by programmers that take into account specific hardware.
- When the hardware changes, these tricks can slow the system down instead of making it run more efficiently.
4. How Migration Is Usually Done

- When a user runs a legacy code on a new system, the compiler produces thousands of error messages.
- Usually, a software developer looks corrects these errors one by one.
- This is a very slow and very expensive process:
 - correcting each error can take hours, and
 - the resulting salary expenses can run to millions of dollars.
- There exist tools that try to automate this process by speeding up the correction of each individual error.
- These tools speed up the required time by a factor of even ten.
- However, still thousands of errors have to be handled individually.
5. Resulting Problem: Need to Speed up Migration and Modernization

- Migration and modernization of legacy software is a ubiquitous problem.

- It is thus desirable to come up with ways to speed up this process.

- In this paper:
 - we propose such an idea, and
 - we show how expert knowledge can help in implementing this idea.
6. Our Main Idea

- Modern compilers do not simply indicate an error,
- They usually provide a reasonably understandable description of the type of an error; for example:
 - it may be that a program is dividing by zero,
 - it may be that an array index is out of bound.
- Some of these types of error appear in numerous places in the software.
- Our experience shows that in many such places, these errors are caused by the same problem in the code.
- So, instead of trying to “rack our brains” over each individual error, a better idea is
 - to look at all the errors of the given type, and
 - come up with a solution that would automatically eliminate the vast majority of these errors.
7. Need for Expert Knowledge

- This idea saves time only if we have enough errors of a given type.
- We thus need to predict how many errors of different type we will encounter.
- There are currently no well-justified software models that can predict these numbers.
- What we do have is many system developers who have an experience in migrating and modernizing software.
- It is therefore desirable to utilize their experience.
- Experts usually describe their experience by using imprecise (“fuzzy”) words from natural language.
- It is reasonable to use the known precisiation techniques – fuzzy logic.
8. Expert Knowledge about Software Migration and Modernization and Its Precisiation

• A reasonable idea is to start with \(n_1 \) errors of the most frequent type.

• Then, we should concentrate on \(n_2 \) errors of the second most frequent type, etc.

• So, we want to know the numbers \(n_1, n_2, \ldots \), for which

\[
 n_1 \geq n_2 \geq \ldots \geq n_{k-1} \geq n_k \geq n_{k+1} \geq \ldots
\]

• We know that for every \(k \), \(n_{k+1} \) is somewhat smaller than \(n_k \).

• Similarly, \(n_{k+2} \) is more noticeably smaller than \(n_k \), etc.

• After formalizing and defuzzifying the \(n_k < n_{k+1} \) rule, we get \(n_{k+1} = f(n_k) \).

• Which function \(f(n) \) should we choose?
9. Which Function $f(n)$ Should We Choose?

- A migrated software package usually consists of two (or more) parts.
- We can estimate n_{k+1} in two different ways:
 - We can use $n_k = n_k^{(1)} + n_k^{(2)}$ to predict
 $$n_{k+1} \approx f(n_k) = f(n_k^{(1)} + n_k^{(2)}).$$
 - Oe, we can use $n_k^{(1)}$ to predict $n_k^{(1)}$, $n_k^{(2)}$ to predict $n_k^{(2)}$, and add them: $n_{k+1} \approx f(n_k^{(1)}) + f(n_k^{(2)})$.
- It is reasonable to require that these estimates coincide:
 $$f(n_k^{(1)} + n_k^{(2)}) = f(n_k^{(1)}) + f(n_k^{(2)}).$$
- So, $f(a + b) = f(a) + f(b)$ for all a and b, thus $f(a) = f(1) + \ldots + f(1)$ (a times), and $f(a) = f(1) \cdot a$.
- Thus, $n_{k+1} = c \cdot n_k$, i.e., $n_{k+1}/n_k = \text{const.}$
10. Empirical Data: Values n_{k} for Migrating a Health-Related C Package from 32 to 64 Bits

Here, n_{ab} is stored in the a-th column (marked ax) and b-th row (marked xb).

<table>
<thead>
<tr>
<th></th>
<th>0x</th>
<th>1x</th>
<th>2x</th>
<th>3x</th>
<th>4x</th>
<th>5x</th>
<th>6x</th>
<th>7x</th>
</tr>
</thead>
<tbody>
<tr>
<td>x0</td>
<td>–</td>
<td>308</td>
<td>95</td>
<td>47</td>
<td>13</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x1</td>
<td>7682</td>
<td>301</td>
<td>91</td>
<td>38</td>
<td>13</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x2</td>
<td>4757</td>
<td>266</td>
<td>85</td>
<td>34</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x3</td>
<td>3574</td>
<td>261</td>
<td>81</td>
<td>34</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x4</td>
<td>2473</td>
<td>241</td>
<td>76</td>
<td>30</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x5</td>
<td>2157</td>
<td>240</td>
<td>69</td>
<td>24</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x6</td>
<td>956</td>
<td>236</td>
<td>58</td>
<td>21</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x7</td>
<td>769</td>
<td>171</td>
<td>57</td>
<td>19</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x8</td>
<td>565</td>
<td>156</td>
<td>50</td>
<td>17</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x9</td>
<td>436</td>
<td>98</td>
<td>47</td>
<td>17</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>–</td>
</tr>
</tbody>
</table>
11. **Empirical Data: Values** n_{k} **for Migrating a Health-Related C Package from 32 to 64 Bits**

Here, n_{ab} is stored in the a-th column (marked ax) and b-th row (marked xb); e.g., $n_{23} = 81$.

<table>
<thead>
<tr>
<th></th>
<th>0x</th>
<th>1x</th>
<th>2x</th>
<th>3x</th>
<th>4x</th>
<th>5x</th>
<th>6x</th>
<th>7x</th>
</tr>
</thead>
<tbody>
<tr>
<td>x0</td>
<td>–</td>
<td>308</td>
<td>95</td>
<td>47</td>
<td>13</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x1</td>
<td>7682</td>
<td>301</td>
<td>91</td>
<td>38</td>
<td>13</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x2</td>
<td>4757</td>
<td>266</td>
<td>85</td>
<td>34</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x3</td>
<td>3574</td>
<td>261</td>
<td>81</td>
<td>34</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x4</td>
<td>2473</td>
<td>241</td>
<td>76</td>
<td>30</td>
<td>11</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x5</td>
<td>2157</td>
<td>240</td>
<td>69</td>
<td>24</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x6</td>
<td>956</td>
<td>236</td>
<td>58</td>
<td>21</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>x7</td>
<td>769</td>
<td>171</td>
<td>57</td>
<td>19</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x8</td>
<td>565</td>
<td>156</td>
<td>50</td>
<td>17</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>x9</td>
<td>436</td>
<td>98</td>
<td>47</td>
<td>17</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>–</td>
</tr>
</tbody>
</table>
12. How Accurate is This Estimate?

- One can easily see that for $k \leq 9$, we indeed have $n_{k+1} \approx c \cdot n_k$, with $c \approx 0.65-0.75$.

- Thus, the above simple rule described the most frequent errors reasonably accurately.

- However, starting with $k = 10$, the ratio n_{k+1}/n_k becomes much closer to 1.

- Thus, the one-rule estimate is no longer a good estimate.

- A natural idea is this to use two rules:
 - in addition to the rule that n_{k+1} is somewhat smaller than n_k,
 - let us also use the rule that n_{k+2} is more noticeably smaller than n_k.
13. Two-Rules Approach

- Once we know \(n_k \) and \(n_{k+1} \), we can use fuzzy methodology and get an estimate \(n_{k+2} = f(n_k, n_{k+1}) \).

- When the software package consists of two parts, we can estimate \(n_{k+2} \) in two different ways:

 - We can use the overall numbers \(n_k = n_k^{(1)} + n_k^{(2)} \) and \(n_{k+1} = n_{k+1}^{(1)} + n_{k+1}^{(2)} \) and predict
 \[
 n_{k+2} \approx f(n_k, n_{k+1}) = f(n_k^{(1)} + n_k^{(2)}, n_{k+1}^{(1)} + n_{k+1}^{(2)}).
 \]

 - Alternatively, we can predict the values \(n_{k+2}^{(1)} \) and \(n_{k+2}^{(2)} \), and add up these predictions:
 \[
 n_{k+2} \approx f(n_k^{(1)}, n_{k+1}^{(1)}) + f(n_k^{(2)}, n_{k+1}^{(2)}).
 \]

- It is reasonable to require that these two approaches lead to the same estimate, i.e., that we have
 \[
 f(n_k^{(1)} + n_k^{(2)}, n_{k+1}^{(1)} + n_{k+1}^{(2)}) = f(n_k^{(1)}, n_{k+1}^{(1)}) + f(n_k^{(2)}, n_{k+1}^{(2)}).
 \]
14. Two-Rules Approach (cont-d)

• Reminder: for all \(a \geq a' \) and \(b \geq b' \), we have
 \[
 f(a + b, a' + b') = f(a, a') + f(b, b').
 \]

• One can show that this leads to \(n_{k+2} = c \cdot n_k + c' \cdot n_{k+1} \)
 for some \(c \) and \(c' \), and thus, to
 \[
 n_k = A_1 \cdot \exp(-b_1 \cdot k) + A_2 \cdot \exp(b_2 \cdot k).
 \]

• In general, \(b_i \) are complex numbers – leading to oscillating sinusoidal terms.

• We want \(n_k \geq n_{k+1} \), so there are no oscillations, both \(b_i \) are real.

• Without losing generality, we can assume that \(b_1 < b_2 \).

• If \(A_1 > A_2 \), then the first term always dominates.

• But we already know that an exponential function is not a good description of \(n_k \).
15. Two-Rules Model Fits the Data

- Thus, to fit the empirical data, we must use models with \(A_1 < A_2 \). In this case:
 - for small \(k \), the second – faster-decreasing – term dominates: \(n_k \approx A_2 \cdot \exp(-b_2 \cdot k) \);
 - for larger \(k \), the first – slower-decreasing – term dominates: \(n_k \approx A_1 \cdot \exp(-b_1 \cdot k) \).

- This double-exponential model indeed describes the above data reasonably accurately:
 - for \(k \leq 9 \), the data is a good fit with an exponential model for which \(\rho = n_{k+1}/n_k \approx 0.65-0.75 \);
 - for \(k \geq 10 \), the data is a good fit with another exponential model, for which \(\rho^{10} \approx 2-3 \).
16. Practical Consequences

• For small \(k \), the dependence \(n_k \) rapidly decreases with \(k \).

• So, the values \(n_k \) corresponding to small \(k \) constitute the vast majority of all the errors.

• In the above example, 85 percent of errors are of the first 10 types; thus:
 – once we learn to repair errors of these types,
 – the remaining number of un-corrected errors decreases by a factor of seven.

• This observation has indeed led to a significant speed-up of software migration and modernization.
17. Conclusion

• In many practical situations, we need to migrate legacy software to a new hardware and system environment.

• If we run the software package in the new environment, we get thousands of difficult-to-correct errors.

• As a result, software migration is very time-consuming.

• A reasonable way to speed up this process is to take into account that:
 – errors can be naturally classified into categories,
 – often all the errors of the same category can be corrected by a single correction.

• Coming up with such a joint correction is also somewhat time-consuming.

• The corresponding additional time pays off only if we have sufficiently many errors of this category.
18. Conclusion (cont-d)

- Coming up with a joint correction is time-consuming.
- This additional time pays off only if we have sufficiently many errors of this category.
- So, it is desirable to be able to estimate the number of errors n_k of different categories k.
- We show that expert knowledge leads to a double-exponential model in good accordance w/observations.
19. Acknowledgment

This work was supported in part by the National Science Foundation grants:

- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
- DUE-0926721.