What If We Use Different “And”-Operations in the Same Expert System

Mahdokht Afravi and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
mafravi@miners.utep.edu
vladik@utep.edu
1. Need for Expert Systems

- We often rely on expert knowledge; e.g.:
 - we ask medical experts to help cure patients,
 - we ask human expert in piloting to pilot planes.
- Ideally, everyone should have access to the top experts:
 - top experts in medicine should cure all the patients,
 - top pilots should pilot every plane, etc.
- However, there are very few best experts.
- So, it is not realistic to expect these top experts to satisfy all the demands.
- It is therefore desirable to describe the knowledge of the top experts inside a computer.
- Then other experts can use this knowledge.
- This descriptions are known as *expert systems*.
2. Need for Degrees of Certainty

• Experts are usually not 100% certain about their statements. For example:
 • a medical expert may indicate some visible signs of a heart attack, but
 • but experts cannot tell with absolute certainty whether a patient is experiencing a heart attack.

• The expert system must store the experts’ degrees of certainty in different statements.

• In the computer, “absolutely true” is usually represented by 1, and “absolutely false” by 0.

• Thus, intermediate degrees of certainty are usually described by numbers between 0 and 1.
3. Need for “And”-Operations

• One of the main objectives of an expert system is to help decision maker make decisions.

• Decisions are rarely based on a single expert statement.

• Usually, two or more statements are used to argue for the proper decision.

• For example, we want is, given the symptoms, come up with an appropriate cure.

• However, medical rules rarely go from symptoms directly to cure. Usually:

 • some rules describe a diagnosis based on the symptoms (and test results), and
 • other rules describe a cure based on the diagnosis.
4. Need for “And”-Operations (cont-d)

- So, to decide on an appropriate cure based on given symptoms, we must use at least two rules:
 - a rule describing the diagnosis, and
 - a rule selecting a cure based on the diagnosis.
- It is desirable, in addition to a recommendation r, to also estimate our degree of certainty in r.
- For a recommendation based on several statements:
 - we are certain in this recommendation
 - if we are certain in all the statements used in deriving this recommendation.
- Thus, the degree to which we are confident is a given recommendation is the degree to which:
 - the first statement holds and
 - the second statement holds, etc.
5. Need for “And”-Operations (cont-d)

- So, we need to know the degrees to which each possible “and”-combination of these statement hold.

- Ideally, we should elicit, from the experts, the degrees to which each such combination holds.

- However, this is not practically possible: for \(n \) statements, we can have \(2^n - (n + 1) \) possible combinations.

- So even for a reasonable value \(n \approx 100 \), we have an astronomical number of combinations.

- We cannot elicit the degrees for all “and”-combinations directly from the experts.

- We must therefore estimate these degrees based on the known degrees of confidence in individual statements.
6. “And”-Operations and t-Norms

- In other words, we need to be able:
 - given the expert’s degrees \(a = d(A) \) and \(b = d(B) \) in two statements \(A \) and \(B \),
 - to come up with an estimate for the expert’s degree of confidence in the “and”-combination \(A \& B \).
- This estimate – depending on \(a \) and \(b \) – will be denoted by \(f_\&(a, b) \); it is known as an “and”-operation.
- Usually, we assume that the same “and”-operation can be used for all possible pairs of statements \((A, B)\).
- Under this assumption, we get reasonable requirements on the “and”-operation known as \(t\text{-norms} \).
- For example, \(A \& B \) means the same as \(B \& A \).
- It is thus reasonable to require that \(f_\&(a, b) = f_\&(b, a) \).
7. t-Norms (cont-d)

- Similarly, \(A \& (B \& C) \) means the same as \((A \& B) \& C\), so we should have
 \[
f_{\&}(a, f_{\&}(b, c)) = f_{\&}(f_{\&}(a, b), c).
 \]

- In mathematical terms, this means that the “and”-operation should be associative.

- Also:
 - if we increase our degree of confidence in \(A \) and/or \(B \),
 - this should either increase our degree of confidence in \(A \& B \).

- So, the “and”-operation should be \textit{monotonic}:
 \[
 \text{if } a \leq a' \text{ and } b \leq b', \text{ then } f_{\&}(a, b) \leq f_{\&}(a', b').
 \]
8. Archimedean t-Norms

- If \(a = d(A) = 0 \), then increasing our degree of confidence in \(B \) does not change the estimate for \(A \& B \):
 \[
 b < b', \text{ but } f_{\&}(a, b) = f_{\&}(a, b') = 0.
 \]

- However, if \(a > 0 \), then it’s reasonable to require that in \(b \) increases confidence in \(A \& B \):
 \[
 \text{if } a > 0 \text{ and } b < b', \text{ then } f_{\&}(a, b) < f_{\&}(a, b').
 \]

- t-norms that satisfy this additional requirement are known as Archimedean.

- Not all t-norms are Archimedean: e.g., \(f_{\&}(a, b) = \min(a, b) \) is not an Archimedean t-norm.
9. Archimedean t-Norms (cont-d)

- However, it can be proven that every t-norm can be approximated,
 - with any given accuracy,
 - by an Archimedean one.
- In practice, the degrees are known with some accuracy anyway.
- Thus, without losing any generality, we can always assume that our t-norms are Archimedean.
- A general Archimedean t-norm can be obtained from $f_\& (a, b) = a \cdot b$ by a re-scaling:
 $f_\& (a, b) = g^{-1}(g(a) \cdot g(b))$ for some 1-1 cont. $g : [0, 1] \rightarrow [0, 1]$.
- When $a \leq b$, then, for $f_\& (a, b) = a \cdot b$, there exists a unique c for which $a = f_\& (b, c)$: namely, $c = a/b$.
10. **Inverse Operations**

- The inverse operation corresponds to *implication* \supset: $B \supset A$ is such a statement that:
 - when we combine it with B,
 - we get A.

- When $a > b$, then such an inverse operation is not defined on the interval $(0, 1]$.

- However, we can naturally extend multiplication to all numbers.

- In this case, the inverse operation a/b is always uniquely defined for non-zero degrees.

- Likewise, for all other Archimedean t-norms:
 - we can get a similar extension
 - if we extend the function $g(a)$ to the set of all real numbers.
11. Formulation of the Problem

- There are many different “and”-operations.
- In each area, we should select the one which is the best fit for the reasoning for experts from this area.
- This started with the world’s first expert system MYCIN (on rare blood diseases).
- At first, MYCIN’s authors thought that their “and”-operations are general.
- However, it turns out that geophysicists use different “and”-operations.
- It is now well known that in different control situations, different “and”-operations are most adequate.
- This depends, e.g., on whether we are interested in making smooth transitions or in the fastest way.
12. Formulation of the Problem (cont-d)

• Usually, in fuzzy logic:
 • it is still assumed that the “and”-operation is the same in each problem,
 • while it may differ from problem to problem.

• However, in interdisciplinary situations:
 • it is reasonable to use different “and”-operations
 • to combine degrees corresponding to statements from different disciplines.

• In such situations, associativity is no longer a reasonable requirement, since:
 • we may use different “and”-operations to combine A and B than
 • when we combine B and C.

• So what can we conclude in such a situation?
13. Towards Solving the Problem

- In the general case, it is still reasonable to require strict monotonicity; thus, it is still reasonable to require that:
 - each “and”-operation
 - can be extended to a large domain so that it becomes reversible
 - after we exclude the degree 0.

- A function $f : V_a \times V_b \rightarrow V_c$ is called invertible if the following two conditions are satisfied:
 - for every $a \in V_a$ and for every $c \in V_c$, there exists a unique value $b \in V_b$ for which $c = f(a, b)$;
 - for every $b \in V_b$ and for every $c \in V_c$, there exists a unique value $a \in V_a$ for which $f(a, b) = c$.

- In mathematics, functions invertible in the sense of Definition 1 are called generalized quasigroups.
14. Towards Solving the Problem (cont-d)

- Please note that, to make our results most general, we did not assume commutativity:
 - while in expert systems, we normally assume that “and”-operation is commutative,
 - a natural language “and” is not always commutative.
- For example, “I ate a big dinner and I felt sleepy” is different from “I felt sleepy and I ate a big dinner”.
- We also do not necessarily assume that:
 - the degrees of confidence from different areas
 - are described by the same set of values.
- In general, these sets V_a, V_b, and V_c can be all different.
15. What Do We Have Instead of Associativity?

- Suppose that we have four different types of statements.
- In general, each type has its own set of possible degrees \(V_a, V_b, V_c, \) and \(V_d \).
- We want to use the equivalence of the statements \((A \& B) \& (C \& D)\) and \((A \& C) \& (B \& D)\).
- It is therefore reasonable to require that for these two statements, we get the same estimates.
- The difference from the case when we use a single “and”-operation is that now, in general:
 - we have one “and”-operations \(f_{\&}^{ab} \) to combine values from \(V_a \) and \(V_b \),
 - another “and”-operation \(f_{\&}^{ac} \) to combine value from \(V_a \) and \(V_c \), etc.
16. Instead of Associativity (cont-d)

- To formalize this description, we also need to have sets of degrees for each of the combinations $A \& B$, etc.
- We will denote these sets of degrees by, correspondingly, V_{ab}, V_{bd}, V_{ac}, and V_{bd}.
- We also need to describe a set of value V for the whole complex statement.
- Thus, we arrive at the following definition.
17. Main Definition

- Let V_a, V_b, V_c, V_d, V_{ab}, V_{cd}, V_{ac}, V_{bd}, and V be sets.

- Let us consider invertible operations:

\[
\begin{align*}
 f_{\&}^{ab} : V_a \times V_b &\to V_{ab}, & f_{\&}^{cd} : V_c \times V_d &\to V_{cd}, \\
 f_{\&}^{ac} : V_a \times V_c &\to V_{ac}, & f_{\&}^{bd} : V_b \times V_d &\to V_{bd}, \\
 f_{\&}^{(ab)(cd)} : V_{ab} \times V_{cd} &\to V, & f_{\&}^{(ac)(bd)} : V_{ac} \times V_{bd} &\to V
\end{align*}
\]

- We say that these operations satisfy the generalized associativity requirement if for all $a \in V_a$, $b \in V_b$, . . . :

\[
f_{\&}^{(ab)(cd)}(f_{\&}^{ab}(a, b), f_{\&}^{cd}(c, d)) = f_{\&}^{(ac)(bd)}(f_{\&}^{ac}(a, c), f_{\&}^{bd}(b, d)).
\]

- Comment: In mathematical terms, this requirement is known as generalized mediality.
18. Groups and Abelian Groups: Reminder

• To describe the main result, we need to recall that:
 • a set G with an associative operation $g(a, b)$ and a unit element e (for which $g(a, e) = g(e, a) = a$)
 • is called a group if every element is invertible, i.e., if for every a, there exists an a' for which $g(a, a') = e$.
 • A group in which the operation $g(a, b)$ is commutative is known as Abelian.
19. Main Result

For every set of invertible operations that satisfy the generalized associativity requirement:

- there exists an Abelian group G and 1-1 mappings

$$r_a : V_a \to G, \quad r_b : V_b \to G, \quad r_c : V_c \to G, \quad r_d : V_d \to G,$$

$$r_{ab} : V_{ab} \to G, \quad r_{cd} : V_{cd} \to G, \quad r_{ac} : V_{ac} \to G,$$

$$r_{bd} : V_{bd} \to G, \quad r : V \to G$$

- for which, for all $a \in V_a, b \in V_b, c \in V_c, d \in V_d,$

$v_{ab} \in V_{ab}, v_{cd} \in V_{cd}, v_{ac} \in V_{ac},$ and $v_{bd} \in V_{bd},$ we have:

$$f_{ab}^{(a,b)} = r_{ab}^{-1}(g(r_a(a), r_b(b));$$

$$f_{cd}^{(c,d)} = r_{cd}^{-1}(g(r_c(c), r_d(d));$$

$$f_{ac}^{(a,c)} = r_{ac}^{-1}(g(r_a(a), r_c(c));$$

$$f_{bd}^{(b,d)} = r_{bd}^{-1}(g(r_b(b), r_d(d));$$

$$f_{(ab)(cd)} = r^{-1}(g(r_{ab}(v_{ab}), r_{cd}(v_{cd}));$$

$$f_{(ac)(bd)} = r^{-1}(g(r_{ac}(v_{ac}), r_{bd}(v_{bd})).$$
20. Discussion

- Thus, after appropriate re-scalings r_i, all the “and”-operations reduce to associative operation $g(a, b)$.
- So, even if we have several different “and”-operations, and
 - we can no longer directly justify associativity,
 - associativity can still still be deduced from the natural generalized associativity requirement.
21. Possible Application to Copulas

- Similar “and”-operations are used for probabilities.
- A 1-D probability distribution can be described by its cumulative distribution function (cdf)
 \[F_X(x) \overset{\text{def}}{=} \text{Prob}(X \leq x). \]
- A 2-D distribution of a random vector \((X, Y)\) can be similarly described by its 2-D cdf
 \[F_{XY}(x, y) = \text{Prob}(X \leq x \& Y \leq y). \]
- It turns out that, for an appropriate function \(C_{XY} : [0, 1] \times [0, 1] \rightarrow [0, 1]\) (known as a copula) we have
 \[F_{XY}(x, y) = C_{XY}(F_X(x), F_Y(y)). \]
22. Copulas (cont-d)

• For several random variables X, Y, \ldots, Z, we have:

$$F_{XY\ldots Z}(x, y, \ldots, z) \overset{\text{def}}{=} \text{Prob}(X \leq x \& Y \leq y \& \ldots \& Z \leq z) = C_{XY\ldots Z}(F_X(x), F_Y(y), \ldots, F_Z(z)).$$

• To describe a joint distribution of n variables, we need a function of n variables.

• Even if we use two values for each variable, we get 2^n combinations.

• For large n, this is astronomically large.

• Thus, a reasonable idea is to approximate the multi-D distribution.

• A reasonable way to approximate is to use 2-D copulas.
23. Vine Copulas

- For example, to describe a joint distribution of three variables X, Y, and Z:
 - we first describe the joint distribution of X and Y as $F_{XY}(x, y) = C_{XY}(F_X(x), F_Y(y))$,
 - and then use an appropriate copula $C_{XY,Z}$ to combine it with $F_Z(z)$:
 \[
 F_{XYZ}(x, y, z) \approx C_{XY,Z}(F_{XY}(x, y), F_Z(z)) = C_{XY,Z}(C_{XY}(F_X(x), F_Y(y), F_Z(z)).
 \]
- Such an approximation, when copulas are applied to one another like a vine, are known as *vine copulas*.
- It is reasonable to require that the result should not depend on the combination order.
24. Vine Copulas (cont-d)

- In particular, for four random variables X, Y, Z, and T, we should get the same result:
 - if we first combine X with Y, Z and T, and then combine the two results; or
 - if we first combine X with Z, Y with T, and then combine the two results.

- Thus, we require that for all possible real numbers x, y, z, and t, we get

$$C_{XY,ZT}(C_{XY}(F_X(x), F_Y(y)), C_{ZT}(F_Z(z), F_T(t))) = C_{XZ,YT}(C_{XZ}(F_X(x), F_Z(z)), C_{YT}(F_Y(y), F_T(t))).$$

- If we denote $a = F_X(x)$, $b = F_Y(y)$, $c = F_Z(z)$, $d = F_T(t)$, then for all a, b, c, and d:

$$C_{XY,ZT}(C_{XY}(a, b), C_{ZT}(c, d)) = C_{XZ,YT}(C_{XZ}(a, c), C_{YT}(b, d)).$$
25. **Copulas: Conclusion**

- We have argued that the following equality is true:
 \[
 C_{XY,ZT}(C_{XY}(a, b), C_{ZT}(c, d)) = C_{XZ,YT}(C_{XZ}(a, c), C_{YT}(b, d)).
 \]

- This is exactly our generalized associativity requirement.

- Thus:
 - if we assume that the copulas are invertible,
 - we conclude that they can be *re-scaled to associative operations* – in the sense of the above Theorem.
26. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and
- by an award from Prudential Foundation.