Applications of Uncertainty Techniques in Science and Engineering: Algebraic Approach

Jaime Nava

Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968
jenava@miners.utep.edu
1. Objectives of Science and Engineering: Prediction

- Prediction is one of the main objectives of science and engineering.

- *Example:* in Newton’s mechanics, we want to predict the positions and velocities of different objects.

- *In Physics:*
 - we usually know the exact equations that describe the objects of interest, and
 - we know how to solve these equations.

- This is the case for Newton’s mechanics, for example.

- *In this case,* prediction is a purely mathematical problem - of solving the corresponding equations.

- *In practice:* we have uncertainty.
2. Symmetry: a Fundamental Property of the Physical World

- *One of the main objectives of science:* prediction.
- *Basis for prediction:* we observed similar situations in the past, and we expect similar outcomes.
- *In mathematical terms:* similarity corresponds to symmetry, and similarity of outcomes – to invariance.
- *Example:* we dropped the ball, it fall down.
- *Symmetries:* shift, rotation, etc.
- *In modern physics:* theories are usually formulated in terms of symmetries (not diff. equations).
- *Natural idea:* let us use symmetry to describe uncertainty as well.
3. Outline of the Proposed Work

- Prediction and symmetries in describing systems:
 - chemical applications;
 - applications to geosciences;
 - applications to physics.

- Prediction, symmetries in describing uncertainty:
 - neural networks;
 - Dempster-Shafer approach;
 - I-complexity.

- Model validation.

- Design and control:
 - types of intelligent control (Mamdani, etc.);
 - different operations in intelligent control;
 - best intelligent control in terms of tropical algebras.
4. Basic Symmetries: Scaling and Shift

- **Typical situation:** we deal with the numerical values of a physical quantity.
- Numerical values depend on the *measuring unit*.
- **Scaling:** if we use a new unit which is \(\lambda \) times smaller, numerical values are multiplied by \(\lambda \): \(x \rightarrow \lambda \cdot x \).
- **Example:** \(x \) meters = 100 \(\cdot \) \(x \) cm.
- **Another possibility:** change the starting point.
- **Shift:** if we use a new starting point which is \(s \) units before, then \(x \rightarrow x + s \) (example: time).
- Together, scaling and shifts form *linear transformations* \(x \rightarrow a \cdot x + b \).
- **Invariance:** physical formulas should not depend on the choice of a measuring unit or of a starting point.
5. Basic Nonlinear Symmetries

- Sometimes, a system also has *nonlinear* symmetries.

- If a system is invariant under \(f \) and \(g \), then:
 - it is invariant under their composition \(f \circ g \), and
 - it is invariant under the inverse transformation \(f^{-1} \).

- In mathematical terms, this means that symmetries form a *group*.

- In practice, at any given moment of time, we can only store and describe finitely many parameters.

- Thus, it is reasonable to restrict ourselves to *finite-dimensional* groups.

- *Question* (N. Wiener): describe all finite-dimensional groups that contain all linear transformations.

- *Answer* (for real numbers): all elements of this group are fractionally-linear \(x \rightarrow (a \cdot x + b)/(c \cdot x + d) \).
6. Symmetries in Chemistry

- Molecules such as benzene or cubane have the additional property of *discrete symmetry*.
- This means that rotation does not change the chemical properties of a molecule.
- *Example:* Perform a clockwise 60 degree rotation on a benzene.
7. First Application: Neural Networks (Brief Reminder)

- In the traditional (3-layer) neural networks, the input values x_1, \ldots, x_n:
 - first go through the non-linear layer of “hidden” neurons, resulting in the values
 $$y_i = s_0 \left(\sum_{j=1}^{n} w_{ij} \cdot x_j - w_{i0} \right) \quad 1 \leq i \leq m,$$
 - after which a linear neuron combines the results y_i into the output $y = \sum_{i=1}^{m} W_i \cdot y_i - W_0$.

- Here, W_i and w_{ij} are weights selected based on the data, and $s_0(z)$ is a non-linear activation function.
- Usually, the “sigmoid” activation function is used:
 $$s_0(z) = \frac{1}{1 + \exp(-z)}.$$
8. Training a Neural Network: Reminder

- The weights W_i and w_{ij} are selected so as to fit the data, i.e., that

\[y^{(k)} \approx f \left(x^{(k)}_1, \ldots, x^{(k)}_n \right), \]

where:

- $x^{(k)}_1, \ldots, x^{(k)}_n$ $(1 \leq k \leq N)$ are given values of the inputs, and
- $y^{(k)}$ are given values of the output.

- One of the problems with the traditional neural networks is that

 - in the process of learning – i.e., in the process of adjusting the values of the weights to fit the data –
 - some of the neurons are duplicated, i.e., we get $w_{ij} = w_{i'i'}$ for some $i \neq i'$ and thus, $y_i = y_{i'}$.

- As a result, we do not fully use the learning capacity of a neural network: we could use fewer hidden neurons.
9. Apolloni’s Idea

- **Problem** (reminder):

 - in the process of learning – i.e., in the process of adjusting the values of the weights to fit the data –
 - some of the neurons are duplicated, i.e., we get $w_{ij} = w_{i'j}$ for some $i \neq i'$ and thus, $y_i = y_{i'}$.

- To avoid this problem, B. Apolloni et al. suggested that we *orthogonalize* the neurons during training.

- In other words, we make sure that the corresponding functions $y_i(x_1, \ldots, x_n)$ remain orthogonal:

 $$\langle y_i, y_j \rangle = \int y_i(x) \cdot y_j(x) \, dx = 0.$$

- Since Apolloni *et al.* idea works well, it is desirable to look for its precise mathematical justification.

- We provide such a justification in terms of symmetries.
10. Symmetries in Neural Networks: Why Symmetries?

• At first glance, the use of symmetries in neural networks may sound somewhat strange.

• Indeed, there are no explicit symmetries there.

• However, as we will show, hidden symmetries have been actively used in neural networks.

• For example, symmetries explain the empirically observed advantages of the sigmoid activation function

\[s_0(z) = \frac{1}{1 + \exp(-z)}. \]
11. Symmetries Explain the Choice of an Activation Function

- **What needs explaining**: formula for the activation function $f(x) = 1/(1 + e^{-x})$.
- A change in the input starting point: $x \rightarrow x + s$.
- **Reasonable requirement**: the new output $f(x+s)$ equivalent to the $f(x)$ mod. appropriate transformation.
- **Reminder**: all appropriate transformations are fractionally linear.
- **Conclusion**: $f(x + s) = \frac{a(s) \cdot f(x) + b(s)}{c(s) \cdot f(x) + d(s)}$.
- Differentiating both sides by s and equating s to 0, we get a differential equation for $f(x)$.
- Its known solution is the sigmoid activation function – which can thus be explained by symmetries.
12. Towards Formulating the Problem in Precise Terms

• We select a basis \(e_0(x), e_1(x), \ldots, e_n(x), \ldots \) so that each f-n \(f(x) \) is represented as \(f(x) = \sum_i c_i \cdot e_i(x) \); e.g.:
 - Taylor series: \(e_0(x) = 1, e_1(x) = x, e_2(x) = x^2, \ldots \)
 - Fourier transform: \(e_i(x) = \sin(\omega_i \cdot x) \).
• We store \(c_0, c_1, \ldots \), instead of the original f-n \(f(x) \).
• **Criterion:** e.g., smallest # of bits to store \(f(x) \) with given accuracy.
• **Observation:** storing \(c_i \) and \(-c_i\) takes the same space.
• Thus, changing one of \(e_i(x) \) to \(e_i'(x) = -e_i(x) \) does not change accuracy or storage space, so:
 - if \(e_0(x), \ldots, e_{i-1}(x), e_i(x), e_{i+1}(x), \ldots \) is an opt. base,
 - \(e_0(x), \ldots, e_{i-1}(x), -e_i(x), e_{i+1}(x), \ldots \) is also optimal.
13. Uniqueness of the Optimal Solution

- **Reminder:** we select the basis $\pm e_0(x), \pm e_1(x), \ldots$

- Each function is determined modulo its sign.

- Sometimes, we have several optimal solutions.

- Then, we can use an additional criterion; e.g.:
 - if two sorting algorithms are equally fast in the worst case $t^w(A) = t^w(A')$,
 - we can select the one with the smallest average time $t^a(A) \rightarrow \text{min}$.

- In effect, we have a new criterion: A is better than A' if $t^w(A) < t^w(A')$ or ($t^w(A) = t^w(A')$ and $t^a(A) < t^a(A')$).

- So, non-uniqueness means that the original criterion was not final.

- Relative to a final criterion, there is only one optimal solution.
14. Uniqueness of the Optimal Basis

- **Reminder:**
 - we select the basis $\pm e_0(x), \pm e_1(x), \pm e_3(x), \ldots$;
 - each function is determined modulo its sign.

- **Optimal solutions** are unique:
 - relative to a *final* criterion,
 - there is *only one* optimal solution.

- **Conclusion:** it is reasonable to require that
 - once we have one optimal basis
 \[
 e_0(x), \; e_1(x), \; e_2(x), \; \ldots,\]
 - all other optimal bases have the form
 \[
 \pm e_0(x), \; \pm e_1(x), \; \pm e_2(x), \; \ldots
 \]}
15. How to Describe Average Accuracy

- What is a probability distribution on $f(x)$?
- Dependencies $f(x)$ come from many different factors.
- Due to Central Limit Theorem, it is thus reasonable to assume that the distribution on $f(x)$ is Gaussian.
- If $m(x) \overset{\text{def}}{=} E[f(x)] \neq 0$, we can store differences $\Delta f(x) \overset{\text{def}}{=} f(x) - m(x)$, for which $E[\Delta f(x)] = 0$.
- Thus, w.l.o.g., we can assume that $E[f(x)] = 0$.
- Such Gaussian distributions are uniquely determined by their covariances $C(x, y) \overset{\text{def}}{=} E[f(x) \cdot f(y)]$.
- A Gaussian distribution can be described by indep. components: $f(x) = \sum_i \eta_i \cdot f_i(x)$, w/ $E[\eta_i \cdot \eta_j] = 0$, $i \neq j$.
- We also want to know the mean square values $\int (f(x) - f_\approx(x))^2 \, dx$.
16. Kahrunen-Loeve (KL) Basis

- A Gaussian distribution can be described by indep. components: \(f(x) = \sum \eta_i \cdot f_i(x) \), w/ \(E[\eta_i \cdot \eta_j] = 0, \ i \neq j \).

- We also want to know \(\int (f(x) - f_\approx(x))^2 \, dx \).

- Idea: use a basis \(f_j(x) \) of eigenfunctions of the covariance function \(C(x, y) = E[f(x)f(y)] \):

\[
\int C(x, y) \cdot f_j(y) \, dy = \lambda_j \cdot f_j(x).
\]

- Functions from this KL basis are orthogonal; they are usually selected to be orthonormal \(\int f_j^2(x) \, dx = 1 \).

- If we change some \(f_j(x) \) to \(-f_j(x) \), we get a KL basis.

- So, criteria depending on \(E[f(x) \cdot f(y)] \) and \(\int f^2(x) \, dx \) do not change.

- In the general case, when all \(\lambda_j \) are different, each \(f_j(x) \) is determined uniquely modulo \(f_j(x) \rightarrow -f_j(x) \).
17. Proof of the Main Result

- **Let**: \(e_i(x) \) be an optimal basis, and let \(f_j(x) \) be a KL basis, then
 \[e_i(x) = \sum_j a_{ij} \cdot f_j(x). \]

- **Reminder**: if we change one of the functions \(f_{j_0}(x) \) to \(-f_{j_0}(x) \), the criterion does not change.

- **Thus**: the following f-ns also form an optimal basis:
 \[e'_i(x) = \sum_{j \neq j_0} a_{ij} \cdot f_j(x) - a_{ij_0} \cdot f_{j_0}(x). \]

- **Reminder**: \(\forall \) optimal basis has the form \(\pm e_i(x) \), thus:
 \[e'_i(x) = \sum_{j \neq j_0} a_{ij} \cdot f_j(x) - a_{ij_0} \cdot f_{j_0}(x) = \pm \left(\sum_j a_{ij} \cdot f_j(x) \right). \]

- **So**: if \(a_{ij_0} \neq 0 \), then \(a_{ij} = 0 \) for all \(j \neq j_0 \).

- **Thus**: each \(e_i(x) \) has the form \(e_i(x) = a_{ij_0} \cdot f_{j_0}(x) \) for some \(j_0 \).
18. Conclusions

- We proved: that for the optimal basis $e_i(x)$ and for the KL basis $f_j(x)$, each $e_i(x)$ has the form
 \[e_i(x) = a_{ij} \cdot f_j(x) \text{ for some } a_{ij}. \]

- We know: that the elements $f_j(x)$ of the KL basis are orthogonal.

- So: we conclude that the elements $e_i(x)$ of the optimal basis are orthogonal as well.

- Conclusion: the elements of the optimal basis are orthogonal.

- Apolloni’s idea: always make sure that we use an orthogonal basis.

- Fact: this idea has been empirically successful.

- New result: Apolloni’s idea has been theoretically justified.
19. Second Application: Kolmogorov Complexity

- The best way to describe the complexity of a given string s is to find its *Kolmogorov complexity* $K(s)$.
- $K(s)$ is the shortest length of a program that computes s.
- For example, a sequence is random if and only if its Kolmogorov complexity is close to its length.
- We can check how close are two DNA sequences s and s' by comparing $K(ss')$ with $K(s) + K(s')$:
 - if they are *unrelated*, the only way to generate ss' is to generate s and then generate s', so
 $$K(ss') \approx K(s) + K(s');$$
 - if they are *related*, we have $K(ss') \ll K(s) + K(s')$.
20. Need for Approximate Complexity

- The big problem is that the Kolmogorov complexity is, in general, *not* algorithmically *computable*.
- Thus, it is desirable to come up with *computable* approximations.
- At present, most algorithms for approximating $K(s)$:
 - use some loss-less compression technique to compress s, and
 - take the length $\tilde{K}(s)$ of the compression as the desired approximation.
- However, this approximation has limitations: for example,
 - in contrast to $K(s)$, where a change (one-bit) change in s cannot change $K(s)$ much,
 - a small change in s can lead to a drastic change in $\tilde{K}(s)$.
21. I-Complexity

- Limitation of $\tilde{K}(s)$: a small change in $s = (s_1s_2 \ldots s_n)$ can lead to a drastic change in $\tilde{K}(s)$.

- To overcome this limitation, V. Becher and P. A. Heiber proposed the following new notion of I-complexity.

- For each position i, we find the length $B_s[i]$ of the largest repeated substring within $s_1 \ldots s_i$.

- For example, for $aaaab$, the corresponding values of $B_s(i)$ are 01233.

- We then define $I(s) \overset{\text{def}}{=} \sum_{i=1}^{n} f(B_s[i])$, for an appropriate decreasing function $f(x)$.

- Specifically, it turned out that the discrete derivative of the logarithm works well: $f(x) = d\log(x + 1)$, where $d\log(x) \overset{\text{def}}{=} \log(x + 1) - \log(x)$.
22. Good Properties of I-Complexity

- **Reminder:** \(I(s) = \sum_{i=1}^{n} f(B_s[i]) \), where:
 - \(B_s[i] \) is the length of the largest repeated substring within \(s_1 \ldots s_i \), and
 - \(f(x) = \log(x + 1) - \log(x) \).

- **Similarly to \(K(s) \):**
 - If \(s \) starts \(s' \), then \(I(s) \leq I(s') \).
 - We have \(I(0s) \approx I(s) \) and \(I(1s) \approx I(s) \).
 - We have \(I(ss') \leq I(s) + I(s') \).
 - Most strings have high I-complexity.

- **In contrast to \(K(s) \):** I-complexity can be computed in linear time.

- A natural question: why this function \(f(x) \)?
23. Towards Precise Formulation of the Problem

- We view the desired function \(f(x) \) as a discrete analogue of an appropriate continuous function \(F(x) \):

\[
f(x) = \int_x^{x+1} g(y) \, dy = F(x+1) - F(x).
\]

- Which function \(F(x) \) should we choose?

- In the continuous case, the numerical value of each quantity depends:
 - on the choice of the measuring unit and
 - on the choice of the starting point.

- By changing them, we get a new value
 \[x' = a \cdot x + b. \]

- For length \(x \), the starting point 0 is fixed.

- So, we only have re-scaling
 \[x \rightarrow x' = a \cdot x. \]
24. Our Result

- By changing a measuring unit, we get $x' = a \cdot x$.
- When we thus re-scale x, the value $y = F(x)$ changes, to $y' = F(a \cdot x)$.
- It is reasonable to require that the value y' represent the same quantity.
- So, we require that y' differs from y by a similar re-scaling:
 $$y' = F(a \cdot x) = A(a) \cdot F(x) + B(a)$$ for some $A(a)$ and $B(a)$.
- It turns out that all monotonic solutions of this equation are linearly equivalent to $\log(x)$ or to x^α, i.e.:
 $$F(x) = \tilde{a} \cdot \ln(x) + \tilde{b}$$ or
 $$F(x) = \tilde{a} \cdot x^\alpha + \tilde{b}.$$
- So, symmetries do explain the selection of the function $F(x)$ for I-complexity.
25. Proof

- **Reminder:** for some monotonic function $F(x)$, for every a, there exist values $A(a)$ and $B(a)$ for which

$$F(a \cdot x) = A(a) \cdot F(x) + B(a).$$

- **Known fact:** every monotonic function is almost everywhere differentiable.

- Let $x_0 > 0$ be a point where the function $F(x)$ is differentiable.

- Then, for every x, by taking $a = x/x_0$, we conclude that $F(x)$ is differentiable at this point x as well.

- For any $x_1 \neq x_2$, we have $F(a \cdot x_1) = A(a) \cdot F(x_1) + B(a)$ and $F(a \cdot x_2) = A(a) \cdot F(x_2) + B(a)$.

- We get a system of two linear equations with two unknowns $A(a)$ and $B(a)$.
26. Proof (cont-d)

- We get a system of two linear equations with two unknowns $A(a)$ and $B(a)$:

 \[
 F(a \cdot x_1) = A(a) \cdot F(x_1) + B(a).
 \]

 \[
 F(a \cdot x_2) = A(a) \cdot F(x_2) + B(a).
 \]

- Thus, both $A(a)$ and $B(a)$ are linear combinations of differentiable functions $F(a \cdot x_1)$ and $F(a \cdot x_2)$.

- Hence, both functions $A(a)$ and $B(a)$ are differentiable.

- So, $F(a \cdot x) = A(a) \cdot F(x) + B(a)$ for differentiable functions $F(x)$, $A(a)$, and $B(a)$.

- Differentiating both sides by a, we get

 \[
 x \cdot F'(a \cdot x) = A'(a) \cdot F(x) + B'(a).
 \]

- In particular, for $a = 1$, we get $x \cdot \frac{dF}{dx} = A \cdot F + B$, where $A \overset{\text{def}}{=} A'(1)$ and $B \overset{\text{def}}{=} B'(1)$.
27. Proof (final part)

- Reminder: \(x \cdot \frac{dF}{dx} = A \cdot F + B \).

- So, \(\frac{dF}{A \cdot F + b} = \frac{dx}{x} \); now, we can integrate both sides.

- When \(A = 0 \): we get \(\frac{F(x)}{b} = \ln(x) + C \), so
 \[F(x) = b \cdot \ln(x) + b \cdot C. \]

- When \(A \neq 0 \): for \(\tilde{F} \stackrel{\text{def}}{=} F + \frac{b}{A} \), we get \(\frac{d\tilde{F}}{A \cdot \tilde{F}} = \frac{dx}{x} \), so
 \[\frac{1}{A} \cdot \ln(\tilde{F}(x)) = \ln(x) + C, \text{ and } \ln(\tilde{F}(x)) = A \cdot \ln(x) + A \cdot C. \]

- Thus, \(\tilde{F}(x) = C_1 \cdot x^A \), where \(C_1 \stackrel{\text{def}}{=} \exp(A \cdot C) \).

- Hence, \(F(x) = \tilde{F}(x) - \frac{b}{A} = C_1 \cdot x^A - \frac{b}{A} \).

- The theorem is proven.
28. Third Application: Intelligent Control

- One of the main objectives of fuzzy logic is to formalize commonsense and expert reasoning.
- People use logical connectives like “and” and “or”.
- Commonsense “or” can mean both “inclusive or” and “exclusive or”.
- Example: A vending machine can produce either a coke or a diet coke, but not both.
- In mathematics and computer science, “inclusive or” is the one most frequently used as a basic operation.
- Fact: “Exclusive or” is also used in commonsense and expert reasoning.
- Thus: There is a practical need for a fuzzy version.
- Comment: “exclusive or” is actively used in computer design and in quantum computing algorithms.
29. A Crisp “Exclusive Or” Operation

- *Fuzzy analogue* of a classical logic operation op:
 - we know the experts’ degree of belief \(a = d(A) \) and \(b = d(B) \) in statements \(A \) and \(B \);
 - based on \(a \) and \(b \), we want to estimate the degree of belief in “\(A \text{ op } B \)”, as \(f_{\text{op}}(a, b) \).

- For \(\text{op} = \& \), we get an “and”-operation (t-norm).
- For \(\text{op} = \lor \), we get an “or”-operation (t-conorm).
- As usual, the fuzzy “exclusive or” operation must be an extension of the corresponding crisp operation \(\oplus \).
- In the traditional 2-valued logic, \(0 \oplus 0 = 1 \oplus 1 = 0 \) and \(0 \oplus 1 = 1 \oplus 0 = 1 \).
- Thus, the desired fuzzy “exclusive or” operation \(f_{\oplus}(a, b) \) must satisfy the same properties:
 \[
 f_{\oplus}(0, 0) = f_{\oplus}(1, 1) = 0; \quad f_{\oplus}(0, 1) = f_{\oplus}(1, 0) = 1.
 \]
30. Need for the Least Sensitivity: Reminder

- One of the main ways to elicit degree of certainty d is to ask to pick a value on a scale. Example:
 - on a scale of 0 to 10, an expert picks 8, so we get $d = 8/10 = 0.8$;
 - on a scale from 0 to 8, whatever we pick, we cannot get 0.8: $6/8 = 0.75 < 0.8$; $7/8 = 0.875 > 0.8$.
 - the expert will probably pick 6, with $d' = 6/8 = 0.75 \approx 0.8$.

- *It is desirable:* that the result of the fuzzy operation not change much if we slightly change the inputs:
 $$|f(a, b) - f(a', b')| \leq k \cdot \max(|a - a'|, |b - b'|),$$
 with the smallest possible k.

- Such operations are called *the least sensitive* or *the most robust.*
31. For t-Norms and t-Conorms, the Least Sensitivity Requirement Leads to Reasonable Operations

- **Known results:**

 - There is only one least sensitive t-norm ("and"-operation)
 \[f_\&(a, b) = \min(a, b). \]

 - There is also only one least sensitive t-conorm ("or"-operation)
 \[f_V(a, b) = \max(a, b). \]

- **What we do in this presentation:** we describe the least sensitive fuzzy “exclusive or” operation.
32. Definition of a Fuzzy Exclusive-Or Operation

• **Definition:** A function $f : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a fuzzy “exclusive or” operation if

\[
 f(0, 0) = f(1, 1) = 0 \text{ and } f(0, 1) = f(1, 0) = 1.
\]

• **Comment:** We could also require other conditions, e.g., commutativity and associativity.

• However, our main objective is to select a single operation which is the least sensitive.

• **Fact:** The weaker the condition, the larger the class of operations that satisfy these conditions.

• **Thus:** the stronger the result that our operation is the least sensitive in this class.

• **Conclusion:** We select the weakest possible condition to make our result as strong as possible.
33. Main Result

Definition:

- Let F be a class of functions from $[0, 1] \times [0, 1]$ to $[0, 1]$.
- We say that a function $f \in F$ is the least sensitive in the class F if it satisfies the following two conditions:

 - for some real number k, the function f satisfies the condition

 $$|f(a, b) - f(a', b')| \leq k \cdot \max(|a - a'|, |b - b'|);$$

 - no other function $f \in F$ satisfies this condition.

Theorem: In the class of all fuzzy “exclusive or” operations, the following function is the least sensitive:

$$f_\oplus(a, b) = \min(\max(a, b), \max(1 - a, 1 - b)).$$
34. Interpretation of the Main Result

- **Reminder:** the least sensitive operation is
 \[f_\oplus(a, b) = \min(\max(a, b), \max(1 - a, 1 - b)) \].

- **Fact:** in 2-valued logic, “exclusive or” \(\oplus \) can be described in terms of the “inclusive or” operation \(\lor \) as
 \[a \oplus b \Leftrightarrow (a \lor b) \& \neg(a \& b). \]

- **Natural idea:**
 - replace \(\lor \) with the least sensitive “or”-operation \(f_\lor(a, b) = \max(a, b) \),
 - replace \(\& \) with the least sensitive “and”-operation \(f_\&(a, b) = \min(a, b) \), and
 - replace \(\neg \) with the least sensitive negation operation \(f_\neg(a) = 1 - a \),

- **Result:** we get the expression given in the Theorem.
35. Interpretation in Terms of Symmetries

- **Reminder:** degrees of certainty do not have a precise numerical meaning, what is important is order.

- **Symmetries:** arbitrary order-preserving transformations $T : [0, 1] \rightarrow [0, 1]$.

- **What we need:** “and” and “or” operations $f(a, b)$ which are invariant w.r.t. these symmetries:

 \[
 \text{if } c = f(a, b) \text{ then } T(c) = f(T(a), T(b)).
 \]

- **If:** $c = f(a, b) \neq a$ and $c \neq b$, then we can have a symmetry T that leaves a and b intact but changes c.

- **In this case:** we have $c = f(a, b)$ but $T(c) \neq f(a, b) = f(T(a), T(b))$.

- **Conclusion:** for a symmetric operation, we should have $f(a, b) = a$ or $f(a, b) = b$, i.e.,

 \[
 f(a, b) = \min(a, b) \text{ or } f(a, b) = \max(a, b).
 \]
36. Proof of the Main Result: 1st Condition

- **Reminder:** \(f_\oplus(a, b) = \min(\max(a, b), \max(1-a, 1-b)) \).
- **We need to prove** the following two conditions:
 - 1st: that this function \(f_\oplus(a, b) \) satisfies the following condition with \(k = 1 \):
 \[
 |f(a, b) - f(a', b')| \leq k \cdot \max(|a - a'|, |b - b'|);
 \]
 - 2nd: that no other “exclusive or” operation satisfies this property.
- 1st condition: let us prove that for every \(\varepsilon > 0 \), if \(|a - a'| \leq \varepsilon \) and \(|b - b'| \leq \varepsilon \), then
 \[
 |f_\oplus(a, b) - f_\oplus(a', b')| \leq \varepsilon.
 \]
- It is known: that the functions \(\min(a, b) \), \(\max(a, b) \), and \(1 - a \) satisfy the above condition with \(k = 1 \).
37. Proof of the Main Result (cont-d)

- **Known results:** if \(|a - a'| \leq \varepsilon\) and \(|b - b'| \leq \varepsilon\), then the following three inequalities hold:

 \[
 |\max(a, b) - \max(a', b')| \leq \varepsilon; \\
 |(1 - a) - (1 - a')| \leq \varepsilon; \text{ and } |(1 - b) - (1 - b')| \leq \varepsilon.
 \]

- From the result above, by using the condition for the max operation, we conclude that

 \[
 |\max(1 - a, 1 - b) - \max(1 - a', 1 - b')| \leq \varepsilon.
 \]

- Now, from the results above, by using the condition for the min operation, we conclude that

 \[
 |\min(\max(a, b), \max(1 - a, 1 - b)) - \\
 \min(\max(a', b'), \max(1 - a', 1 - b'))| \leq \varepsilon.
 \]

- The statement is proven.
38. Fuzzy “Exclusive Or” Operations $f(a, b)$ Which Are the Least Sensitive on Average

- **Idea:** select f so that on average, the change in a and b leads to the smallest possible change Δc in $c = f(a, b)$.

- **Assumption:** Δa and Δb are independent random variables with 0 mean and small variance σ^2.

- **Objective:** estimate $\Delta c = f(a + \Delta a, b + \Delta b) - f(a, b)$.

Since Δa and Δb are small, we can keep only linear terms in the Taylor series of Δc w.r.t. Δa and Δb:

$$\Delta c \approx \frac{\partial f}{\partial a} \cdot \Delta a + \frac{\partial f}{\partial b} \cdot \Delta b.$$

Since the variables are independent with 0 mean, the mean of Δc is also 0, and variance of Δc is equal to

$$\sigma^2(a, b) = \left(\left(\frac{\partial f}{\partial a} \right)^2 + \left(\frac{\partial f}{\partial b} \right)^2 \right) \cdot \sigma^2.$$
39. Fuzzy “Exclusive Or” Operations Which Are the Least Sensitive on Average (cont-d)

- **Reminder**: for each \(a\) and \(b\), the variance \(\sigma^2(a, b)\) of \(\Delta c\) is equal to
 \[
 \sigma^2(a, b) = \left(\left(\frac{\partial f}{\partial a}\right)^2 + \left(\frac{\partial f}{\partial b}\right)^2\right) \cdot \sigma^2.
 \]

- To get the “average” variance, it is reasonable to average this value \(\sigma^2(a, b)\) over all possible \(a\) and \(b\).

- **Resulting average value**: \(I \cdot \sigma^2\), where
 \[
 I \overset{\text{def}}{=} \int_{a=0}^{a=1} \int_{b=0}^{b=1} \left(\left(\frac{\partial f}{\partial a}\right)^2 + \left(\frac{\partial f}{\partial b}\right)^2\right) \, da \, db.
 \]

- We want: the average sensitivity to be the smallest.

- **Conclusion**: we select the function \(f(a, b)\) for which the integral \(I\) takes the smallest possible value.
40. **New Result: Formulation**

- **Reminder**: we consider “exclusive or” operations $f(a, b)$, i.e., functions $f : [0, 1] \times [0, 1] \rightarrow [0, 1]$ for which:

 \[f(0, b) = b, \quad f(a, 0) = a, \quad f(1, b) = 1 - b, \quad \text{and} \quad f(a, 1) = 1 - a. \]

- **Main result**: among all such operations, the operation which is the least sensitive on average has the form
 \[f_\oplus(a, b) = a + b - 2 \cdot a \cdot b. \]

- **Interpretation**:

 - the classical (2-valued) “exclusive or” operation $a \oplus b$ can be represented as $(a \lor b) \land (\neg a \lor \neg b)$;

 - use the fuzzy analogues of \land, \lor, and \neg which are the least sensitive on average:

 \[f_\land(a, b) = \max(p + q - 1, 0); \quad f_\lor(a, b) = p + q - p \cdot q; \]

 \[f_\neg(a) = 1 - a. \]