Kinematic Spaces: Motivations from Space-Time Physics, Main Mathematical Results, Algorithmic Results and Challenges, and Possible Relation to de Vries Algebras

Vladik Kreinovich and Francisco Zapata
Department of Computer Science, University of Texas
El Paso, Texas, USA, vladik@utep.edu, fazg74@gmail.com
1. Why Ordering Relations

• Traditionally, in physics, space-times are described by (pseudo-)Riemann spaces, i.e.:
 – by smooth manifolds
 – with a tensor metric field $g_{ij}(x)$.

• However, in several physically interesting situations smoothness is violated and metric is undefined:
 – near the singularity (Big Bang),
 – at the black holes, and
 – on the microlevel, when we take into account quantum effects.

• In all these situations, what remains is causality \preceq – an ordering relation.

2. Causality: Brief History

- In Newton’s physics, signals can potentially travel with an arbitrarily large speed.

- Let $a = (t, x)$ denote an event occurring at the spatial location x at time t.

- Then, an event $a = (t, x)$ can influence an event $a' = (t', x')$ if and only if $t \leq t'$.

- The fundamental role of the non-trivial causality relation emerged with the Special Relativity (SRT).

- In SRT, the speed of all the signals is limited by the speed of light c.

- As a result, $a = (t, x) \leq a' = (t', x')$ if and only if $t' \geq t$ and $\frac{d(x, x')}{t' - t} \leq c$, i.e.:

$$c \cdot (t' - t) \geq \sqrt{(x_1 - x'_1)^2 + (x_2 - x'_2)^2 + (x_3 - x'_3)^2}.$$
3. Causality: A Graphical Description

\[x = -c \cdot t \]

\[x = c \cdot t \]
4. Importance of Causality

- In the original special relativity theory, causality was just one of the concepts.

- Its central role was revealed by A. D. Alexandrov (1950) who showed that in SRT, causality implied Lorenz group:

- Every order-preserving transforming of the corr. partial ordered set is linear, and is a composition of:
 - spatial rotations,
 - Lorentz transformations (describing a transition to a moving reference frame), and
 - re-scalings $x \rightarrow \lambda \cdot x$ (corresponding to a change of unit for measuring space and time).

- This theorem was later generalized by E. Zeeman and is known as the Alexandrov-Zeeman theorem.
5. When is Causality Experimentally Confirmable?

- In many applications, we only observe an event \(b \) with some accuracy.

- For example, in physics, we may want to check what is happening exactly 1 second after a certain reaction.

- However, in practice, we cannot measure time exactly, so, we observe an event occurring \(1 \pm 0.001 \) sec after \(a \).

- In general, we can only guarantee that the observed event is within a certain neighborhood \(U_b \) of the event \(b \).

- Because of this uncertainty, the only possibility to experimentally confirm that \(a \) can influence \(b \) is when

 \[
 a \prec b \iff \exists U_b \forall \tilde{b} \in U_b \ (a \preceq \tilde{b}).
 \]

- In topological terms, this means that \(b \) is in the interior \(K_a^+ \) of the closed cone \(C_a^+ = \{c : a \preceq c\} \).
6. Kinematic Orders

- In physics, $a \prec b$ correspond to influences with speeds smaller than the speed of light.

- There are two types of objects:
 - objects with non-zero rest mass can travel with any possible speed $v < c$ but not with the speed c;
 - objects with zero rest mass (e.g., photons) can travel only with the speed c, but not with $v < c$.

- Thus, \prec correspond to causality by traditional (kinematic) objects.

- Because of this:
 - the relation \prec is called *kinematic causality*, and
 - spaces with this relation \prec are called *kinematic spaces*.
7. Kinematic Spaces: Towards a Description

- To describe space-time, we thus need a (pre-)ordering relation ≼ (causality) and topology (equality closeness).
- Natural continuity: for every event \(a \) and for every neighborhood \(U_a \), there exist \(a^- \prec a \) and \(a \prec a^+ \).
- Natural topology: every neighborhood \(U_a \) contains an open interval \((a', a'') = \{b : a' \prec c \prec a''\}\).
- Natural idea: a motion with speed \(c \) is a limit of motions with speeds \(v < c \) when \(v \to c \).
- Resulting description of \(\preceq \) in terms of \(\prec \): \(C^+ = \overline{K}^+ \) and \(C^- = \overline{K}^- \), i.e., \(b \succ a \iff \forall U_b \exists \tilde{b} \left(\tilde{b} \in U_b \& \tilde{b} \succ a \right) \).
- For \(U_b = (b', b'') \), when \(b \prec b'' \), we get \(a \prec \tilde{b} \prec b'' \) hence \(a \prec b'' \).
- Thus, \(a \preceq b \iff \forall c(b \prec c \Rightarrow a \prec c) \).
8. Resulting Definition

- A set X with a partial order \prec is called a kinematic space if it satisfies the following conditions:

 $\forall a \exists a_-, a_+ (a_- \prec a \prec a_+)$;
 $\forall a, b (a \prec b \rightarrow \exists c (a \prec c \prec b))$;
 $\forall a, b, c (a \prec b, c \rightarrow \exists d (a \prec d \prec b, c))$;
 $\forall a, b, c (b, c \prec a \rightarrow \exists d (b, c \prec d \prec a))$.

- We take a topology generated by intervals $(a, b) = \{c : a \prec c \prec b\}$.

- A kinematic space is called normal if

 $b \in \{c : c \succ a\} \iff a \in \{c : c < b\}$.

- For a normal kinematic space, we denote $b \in \{c : c \succ a\}$ by $a \preceq b$.

- It is proven that $a \prec b \preceq c$ and $a \preceq b \prec c$ imply $a \prec c$.

9. First Result: Reconstructing \prec from \preceq

- We consider separable kinematic spaces.
- We say that a space is *complete* if every \preceq-decreasing bounded sequence $\{s_n\}$ has a limit, i.e., $\land s_n$.

- *Lemma.* If every closed intervals $\{c : a \preceq c \preceq b\}$ is compact, then the space is complete.

- If two complete separable normal kinematic orders \prec and \prec' on X lead to the same closed order $\preceq = = \preceq'$, then $\prec = \prec'$.

- Let S_e denote the set of all \preceq-decreasing sequences $s = \{s_n\}$ for which $\land s_n = e$.

- For $s, s' \in S_e$, we define $s \succeq s' \iff \forall n \exists m (s_n \succeq s'_m)$; then:

$$a \succ b \iff \exists e \succeq b \exists s = \{s_n\} \in S_e (s \text{ is largest in } S_e \& s_1 = a).$$
10. Symmetry: a Fundamental Property of the Physical World

• One of the main objectives of science: prediction.

• *Basis for prediction*: we observed similar situations in the past, and we expect similar outcomes.

• *In mathematical terms*: similarity corresponds to symmetry, and similarity of outcomes – to invariance.

• *Example*: we dropped the ball, it fall down.

• *Symmetries*: shift, rotation, etc.

• *In modern physics*: theories are usually formulated in terms of symmetries (not diff. equations).

• *Natural idea*: let us use symmetry to analyze causality as well.
11. Static Space-Times: Space-Times Invariant under Arbitrary Temporal Shifts

Let \(\{T_t\}, t \in \mathbb{R} \) be a 1-parametric group of \(\preceq \)-preserving transformations on a (pre-)ordered set \((E, \preceq)\).

We require that:

- if \(t > 0 \), then \(\forall e \ (e \preceq T_t(e) \& T_t(e) \not\preceq e) \);
- if \(t_n \to t \) and \(\forall n \ (e \preceq T_{t_n}(e')) \), then \(e \preceq T_t(e') \);
- for every \(e, e' \in E \), there exists a \(t \) for which \(e \preceq T_t(e') \) (no cosmological (particle) horizons).

Then, there exists a set \(X \) with a function \(d : X \times X \to \mathbb{R} \) for which \(E \approx \mathbb{R} \times X \) with

\[(t, x) \preceq (t', x') \iff t' - t \geq d(x, x').\]

We can have a metric space \((X, d) \iff \text{the space } E \text{ is } T\text{-invariant w.r.t. some } T : E \to E \text{ s.t. } T^2 = \text{id and } a \preceq b \iff T(b) \preceq T(a).\)
12. de Vries Algebras: Definition

A de Vries algebra is a pair consisting of a complete Boolean algebra \((B, \preceq)\) and a binary relation \(<\) (proximity) for which:

- \(1 < 1\);
- \(a < b\) implies \(a \preceq b\);
- \(a \preceq b < c \preceq d\) implies \(a < d\);
- \(a < b, c\) implies \(a < b \land c\);
- \(a < b\) implies \(\neg b < \neg a\);
- \(a < b\) implies there exists \(c\) such that \(a < c < b\);
- \(a \neq 0\) implies there exists \(b \neq 0\) such that \(b < a\).
13. Relation Between Kinematics and de Vries Algebras

- We say that a de Vries algebra is connected if \(a \prec a \) implies that \(a = 0 \) or \(a = 1 \).

- For every connected de Vries algebra \(B \):
 - the set \(B - \{0, 1\} \) with a proximity relation \(\prec \) is a normal kinematic space, and
 - the original relation \(\preceq \) coincides with the closure of \(\prec \) in the sense of kinematic spaces.

- Let \(S \) be a normal kinematic space with anti-tonic mapping \(\neg \) for which \(\neg
\neg a = a \) and for which,
 - if we add 0 and 1 to the corresponding set \((S, \preceq) \),
 - we get a complete Boolean algebra.

Then, this set is also a connected de Vries algebra.
14. Product Operations for Posets: Examples

- Let us assume that we have two parallel (independent) universes A_1 and A_2.
- Then an event in a multi-verse is a pair (a_1, a_2), where $a_1 \in A_1$ and $a_2 \in A_2$.
- To compare such pairs, we must therefore define a partial order on the set $A_1 \times A_2$ of all such pairs.
- For independent universes, a natural definition is a Cartesian product:

 $$(a_1, a_2) \leq (a'_1, a'_2) \iff ((a_1 \leq a'_1) \& (a_2 \leq a'_2)).$$

- Another operation is a lexicographic product:

 $$(a_1, a_2) \leq (a'_1, a'_2) \iff$$

 $$((a_1 \leq a'_1) \& a_1 \neq a'_1) \lor ((a_1 = a'_1) \& (a_2 \leq a'_2))).$$
15. Possible Physical Meaning of Lexicographic Order

Idea:

- A_1 is *macroscopic* space-time,
- A_2 is *microscopic* space-time:

\[
(a_1, a_2) \quad a_1 \\
(a_1, a'_2) \quad a_1
\]

\[
(a'_1, a_2) \quad a'_1
\]
16. Natural Questions

- **Question**: when does the resulting partially ordered set $A_1 \times A_2$ satisfy a certain property?

- **Examples**: is it a total order? is it a lattice order?

- **It is desirable** to reduce the question about $A_1 \times A_2$ to questions about properties of component spaces A_i.

- **Some such reductions are known**; e.g.:
 - A Cartesian product is a total order \iff one of A_i is a total order, and the other has only one element.
 - A lexicographic product is a total order if and only if both components are totally ordered.

- **In this talk**, we provide a general algorithm for such reduction.
17. Similar Questions in Other Areas

- Similar questions arise in other applications of ordered sets.
- *Our algorithm* does not use the fact that the original relations are orders.
- Thus, our algorithm is applicable to a *general* binary relation – equivalence, similarity, etc.
- Moreover, this algorithm can be applied to the case when we have a space with *several* binary relations.
- *Example:* we may have an order relation and a similarity relation.
18. Definitions

- **By a space**, we mean a set A with m binary relations $P_1(a, a')$, \ldots, $P_m(a, a')$.

- **By a 1st order property**, we mean a formula F obtained from $P_i(x, x')$ by using logical \lor, \land, \neg, \rightarrow, $\exists x$ and $\forall x$.

- **Note**: most properties of interest are 1st order; e.g. to be a total order means $\forall a \forall a' ((a \leq a') \lor (a' \leq a))$.

- **By a product operation**, we mean a collection of m propositional formulas that
 - describe the relation $P_i((a_1, a_2), (a'_1, a'_2))$ between the elements $(a_1, a_2), (a'_1, a'_2) \in A_1 \times A_2$
 - in terms of the relations between the components $a_1, a'_1 \in A_1$ and $a_2, a'_2 \in A_2$ of these elements.

- **Note**: both Cartesian and lexicographic order are product operations in this sense.
19. Main Result

• **Main Result.** *There exists an algorithm that, given*

 • *a product operation and*

 • *a property* F,

 generates a list of properties $F_{11}, F_{12}, \ldots, F_{p1}, F_{p2}$ *s.t.*:

 \[
 F(A_1 \times A_2) \iff ((F_{11}(A_1) \& F_{12}(A_2)) \lor \ldots \lor (F_{p1}(A_1) \& F_{p2}(A_2))).
 \]

• **Example:** For Cartesian product and total order F, we have

 \[
 F(A_1 \times A_2) \iff ((F_{11}(A_1) \& F_{12}(A_2)) \lor (F_{21}(A_1) \& F_{22}(A_2))) :
 \]

 • $F_{11}(A_1)$ means that A_1 is a total order,

 • $F_{12}(A_2)$ means that A_2 is a one-element set,

 • $F_{21}(A_1)$ means that A_1 is a one-element set, and

 • $F_{22}(A_2)$ means that A_2 is a total order.
20. Auxiliary Results

- **Generalization:**
 - A similar algorithm can be formulated for a product of three or more spaces.
 - A similar algorithm can be formulated for the case when we allow ternary and higher order operations.

- **Specifically for partial orders:**
 - The only product operations that always leads to a partial order on \(A_1 \times A_2 \) for which
 \[
 (a_1 \leq_1 a_1' \& a_2 \leq_2 a_2') \rightarrow (a_1, a_2) \leq (a_1', a_2')
 \]
 are Cartesian and lexicographic products.
21. Proof of the Main Result

- The desired property $F(A_1 \times A_2)$ uses:
 - relations $P_i(a, a')$ between elements $a, a' \in A_1 \times A_2$;
 - quantifiers $\forall a$ and $\exists a$ over elements $a \in A_1 \times A_2$.

- Every element $a \in A_1 \times A_2$ is, by definition, a pair (a_1, a_2) in which $a_1 \in A_1$ and $a_2 \in A_2$.

- Let us explicitly replace each variable with such a pair.

- By definition of a product operation:
 - each relation $P_i((a_1, a_2), (a'_1, a'_2))$
 - is a propositional combination of relations betw. elements $a_1, a'_1 \in A_1$ and betw. elements $a_2, a'_2 \in A_2$.

- Let us perform the corresponding replacement.

- Each quantifier can be replaced by quantifiers corresponding to components: e.g., $\forall(a_1, a_2) \iff \forall a_1 \forall a_2$.
22. Proof of the Main Result (cont-d)

- So, we get an equivalent reformulation of F s.t.:
 - elementary formulas are relations between elements of A_1 or between A_2, and
 - quantifiers are over A_1 or over A_2.
- We use induction to reduce to the desired form
 \[(F_{11}(A_1) \& F_{12}(A_2)) \lor \ldots \lor (F_{p1}(A_1) \& F_{p2}(A_2))\).
- Elementary formulas are already of the desired form – provided, of course, that we allow free variables.
- We will show that:
 - if we apply a propositional connective or a quantifier to a formula of this type,
 - then we can reduce the result again to the formula of this type.
23. Applying Propositional Connectives

- We apply propositional connectives to formulas of the type
 \[(F_{11}(A_1) \& F_{12}(A_2)) \lor \ldots \lor (F_{p1}(A_1) \& F_{p2}(A_2))\].
- We thus get a propositional combination of the formulas of the type \(F_{ij}(A_j)\).
- An arbitrary propositional combination can be described as a disjunction of conjunctions (DNF form).
- Each conjunction combines properties related to \(A_1\) and properties related to \(A_2\), i.e., has the form
 \[G_1(A_1) \& \ldots \& G_p(A_1) \& G_{p+1}(A_2) \& \ldots \& G_q(A_2)\].
- Thus, each conjunction has the from \(G(A_1) \& G'(A_2)\), where \(G(A_1) \Leftrightarrow (G_1(A_1) \& \ldots \& G_p(A_1))\).
- Thus, the disjunction of such properties has the desired form.
24. Applying Existential Quantifiers

- When we apply $\exists a_1$, we get a formula
 $$\exists a_1 ((F_{11}(A_1) \& F_{12}(A_2)) \lor \ldots \lor (F_{p1}(A_1) \& F_{p2}(A_2))).$$

- It is known that $\exists a (A \lor B)$ is equivalent to $\exists a A \lor \exists a B$.

- Thus, the above formula is equivalent to a disjunction
 $$\exists a_1 (F_{11}(A_1) \& F_{12}(A_2)) \lor \ldots \lor \exists a_1 (F_{p1}(A_1) \& F_{p2}(A_2)).$$

- Thus, it is sufficient to prove that each formula
 $$\exists a_1 (F_{i1}(A_1) \& F_{i2}(A_2))$$
 has the desired form.

- The term $F_{i2}(A_2)$ does not depend on a_1 at all, it is all about elements of A_2.

- Thus, the above formula is equivalent to
 $$(\exists a_1 F_{i1}(A_1)) \& F_{i2}(A_2).$$

- So, it is equivalent to the formula $F'_{i1}(A_1) \& F_{i2}(A_2)$, where $F'_{i1} \Leftrightarrow \exists a_1 F_{i1}(A_1)$.
25. Applying Universal Quantifiers

- When we apply a universal quantifier, e.g., $\forall a_1$, then we can use the fact that $\forall a_1 F$ is equivalent to $\neg \exists a_1 \neg F$.

- We assumed that the formula F is of the desired type

$$ (F_{11}(A_1) \& F_{12}(A_2)) \lor \ldots \lor (F_{p1}(A_1) \& F_{p2}(A_2)). $$

- By using the propositional part of this proof, we conclude that $\neg F$ can be reduced to the desired type.

- Now, by applying the \exists part of this proof, we conclude that $\exists a_1 (\neg F)$ can also be reduced to the desired type.

- By using the propositional part again, we conclude that $\neg (\exists a_1 \neg F)$ can be reduced to the desired type.

- By induction, we can now conclude that the original formula can be reduced to the desired type.

- The main result is proven.
26. Example of Applying the Algorithm

- Let us apply our algorithm to checking whether a Cartesian product is totally ordered.
- In this case, F has the form $\forall a \forall a' ((a \leq a') \lor (a' \leq a))$.
- We first replace each variable $a, a' \in A_1 \times A_2$ with the corresponding pair:

$$\forall (a_1, a_2) \forall (a'_1, a'_2) (((a_1, a_2) \leq (a'_1, a'_2)) \lor ((a'_1, a'_2) \leq (a_1, a_2))).$$

- Replacing the ordering relation on the Cartesian product with its definition, we get

$$\forall (a_1, a_2) \forall (a'_1, a'_2) ((a_1 \leq a'_1 \land a_2 \leq a'_2) \lor (a'_1 \leq a_1 \land a'_2 \leq a_2)).$$

- Replacing $\forall a$ over pairs with individual $\forall a_i$, we get:

$$\forall a_1 \forall a_2 \forall a'_1 \forall a'_2 (((a_1 \leq a'_1 \land a_2 \leq a'_2)) \lor ((a'_1 \leq a_1 \land a'_2 \leq a_2))).$$

- By using the $\forall \iff \neg \exists \neg$, we get an equivalent form

$$\neg \exists a_1 \exists a_2 \exists a'_1 \exists a'_2 \neg(((a_1 \leq a'_1 \land a_2 \leq a'_2) \lor (a'_1 \leq a_1 \land a'_2 \leq a_2))).$$
27. Example (cont-d)

- So far, we got:
 \[\neg \exists a_1 \exists a_2 \exists a'_1 \exists a'_2 \neg ((a_1 \leq a'_1 \land a_2 \leq a'_2) \lor (a'_1 \leq a_1 \land a'_2 \leq a_2)) \].

- Moving \(\neg \) inside the propositional formula, we get
 \[\neg \exists a_1 \exists a_1' \exists a_2' \exists a'_2' \neg ((a_1 \not\leq a'_1 \lor a_2 \not\leq a'_2) \land (a'_1 \not\leq a_1 \lor a'_2 \not\leq a_2)) \].

- The formula \((a_1 \not\leq a'_1 \lor a_2 \not\leq a'_2) \land (a'_1 \not\leq a_1 \lor a'_2 \not\leq a_2)\) must now be transformed into a DNF form.

- The result is \((a_1 \not\leq a'_1 \land a_2 \not\leq a'_2) \lor (a'_1 \not\leq a_1 \land a'_2 \not\leq a_2) \lor (a_2 \not\leq a'_2 \land a'_1 \not\leq a_1) \lor (a_2 \not\leq a'_2 \land a'_2 \not\leq a_2)\).

- Thus, our formula is \(\iff \neg (F_1 \lor F_2 \lor F_3 \lor F_4)\), where
 \[F_1 \iff \exists a_1 \exists a_2 \exists a'_1 \exists a'_2 (a_1 \not\leq a'_1 \land a'_1 \not\leq a_1), \]
 \[F_2 \iff \exists a_1 \exists a_2 \exists a'_1 \exists a'_2 (a_1 \not\leq a'_1 \land a'_2 \not\leq a_2), \]
 \[F_3 \iff \exists a_1 \exists a_2 \exists a'_1 \exists a'_2 (a_2 \not\leq a'_2 \land a'_1 \not\leq a_1), \]
 \[F_4 \iff \exists a_1 \exists a_2 \exists a'_1 \exists a'_2 (a_2 \not\leq a'_2 \land a'_2 \not\leq a_2). \]
28. Example (cont-d)

- So far, we got \(\iff \neg (F_1 \lor F_2 \lor F_3 \lor F_4) \), where

 \[
 F_1 \iff \exists a_1 \exists a_2 \exists a'_1 \exists a'_2 \ (a_1 \nleq a'_1 \& a'_1 \nleq a_1),
 \]

 \[
 F_2 \iff \exists a_1 \exists a_2 \exists a'_1 \exists a'_2 \ (a_1 \nleq a'_1 \& a'_2 \nleq a_2),
 \]

 \[
 F_3 \iff \exists a_1 \exists a_2 \exists a'_1 \exists a'_2 \ (a_2 \nleq a'_2 \& a'_1 \nleq a_1),
 \]

 \[
 F_4 \iff \exists a_1 \exists a_2 \exists a'_1 \exists a'_2 \ (a_2 \nleq a'_2 \& a'_2 \nleq a_2).
 \]

- By applying the quantifiers to the corresponding parts of the formulas, we get

 \[
 F_1 \iff \exists a_1 \exists a'_1 \ (a_1 \nleq a'_1 \& a'_1 \nleq a_1),
 \]

 \[
 F_2 \iff (\exists a_1 \exists a'_1 a_1 \nleq a'_1) \& (\exists a_2 \exists a'_2 a'_2 \nleq a_2),
 \]

 \[
 F_3 \iff (\exists a_1 \exists a'_1 a'_1 \nleq a_1) \& (\exists a_2 \exists a'_2 a_2 \nleq a'_2),
 \]

 \[
 F_4 \iff \exists a_2 \exists a'_1 \exists a'_2 \ (a_2 \nleq a'_2 \& a'_2 \nleq a_2).
 \]

- Then, we again reduce \(\neg (F_1 \lor F_2 \lor F_3 \lor F_4) \) to DNF.

- At present, two product operations are known:
 - *Cartesian product*
 \[(a_1, a_2) \leq (a'_1, a'_2) \iff (a_1 \leq_1 a'_1 \& a_2 \leq_2 a'_2);\]
 and
 - *lexicographic product*
 \[(a_1, a_2) \leq (a'_1, a'_2) \iff ((a_1 \leq_1 a'_1 \& a_1 \neq a'_1) \vee (a_1 = a'_1 \& a_2 \leq_2 a'_2)).\]

- *Question:* what other operations are possible?
30. **Theorem**

- By a *product operation*, we mean a Boolean function
 \[P : \{T, F\}^4 \rightarrow \{T, F\}. \]

- For every two partially ordered sets \(A_1 \) and \(A_2 \), we define the following relation on \(A_1 \times A_2 \):
 \[
 (a_1, a_2) \leq (a'_1, a'_2) \overset{\text{def}}{=} P(a_1 \leq_1 a'_1, a'_1 \leq_1 a_1, a_2 \leq_2 a'_2, a'_2 \leq_2 a_2).
 \]

- We say that a product operation is *consistent* if \(\leq \) is always a partial order, and
 \[
 (a_1 \leq_1 a'_1 \& a_2 \leq_2 a'_2) \Rightarrow (a_1, a_2) \leq (a'_1, a'_2).
 \]

- **Theorem:** *Every consistent product operation is the Cartesian or the lexicographic product.*
31. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants HRD-0734825 and DUE-0926721, and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health, and
- by a CONACyT scholarship to F. Zapata.