Towards Algebraic Foundations of Algebraic Fuzzy Logic Operations: Aiming at the Minimal Number of Requirements

Jaime Nava

Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
jenava@miners.utep.edu
1. Background. I. Why Fuzzy Logic

- In many applications, it is important to use expert knowledge.

- Experts often describe their knowledge in imprecise ("fuzzy") properties like "small".

- Example of imprecision: for a specific size, an expert may be not fully confident whether this size is small.

- To describe such properties, fuzzy logic was invented.

- In fuzzy logic, each statement is characterized by a degree of confidence.

- Usually, this degree is taken from the interval $[0, 1]$, where:
 - 0 means absolutely false and
 - 1 means absolutely true.
2. Background. II. Fuzzy Logic Operations

- **Typical situation:**
 - *we know:* the degrees $d(A)$ and $d(B)$ of expert confidence in statements A and B;
 - *we need:* to estimate the expert’s degree of confidence in composite statements like $A \& B$, $A \lor B$:

 $$d(A \& B) \approx f_\&(d(A), d(B));$$
 $$d(A \lor B) \approx f_\lor(d(A), d(B));$$
 $$d(\neg A) \approx f_-(d(A)).$$

- The functions providing such estimates are called *fuzzy logic operations*:
 - and-operations (a.k.a. t-norms),
 - or-operations (a.k.a. t-conorms),
 - negation operations, etc.
3. Background. II. Fuzzy Logic Operations (cont-d)

- Fuzzy logic operations must satisfy natural properties.
- Example 1:
 - **Fact:** $A \& B$ means the same as $B \& A$.
 - **Property:** the and-operation $f_\& (a, b)$ must be commutative:
 \[
 f_{\&}(a, b) = f_{\&}(b, a).
 \]
- Example 2:
 - **Fact:** $A \&(B \& C)$ means the same as $(A \& B) \& C$.
 - **Property:** the and-operation $f_\& (a, b)$ must be associative:
 \[
 f_{\&}(a, f_{\&}(b, c)) = f_{\&}(f_{\&}(a, b), c).
 \]
- **Known:** there exist a complete descriptions of all the operations that satisfy such properties.
4. Formulation of the Problem

- **In principle**: we can have very complex fuzzy logic operations.
- **In practice**: mostly simple algebraic operations are used:
 - linear;
 - quadratic;
 - fractional-linear; etc.
- **Foundational challenge**: how do we classify such algebraic fuzzy operations?
- **What we prove in this talk**:
 - to classify algebraic fuzzy logic operations,
 - we do not need to use all the usual properties.
5. Motivating Result: Description of All Quadratic And-Operations

- Consider quadratic functions $f_\& : [0, 1] \times [0, 1] \rightarrow [0, 1]$:
 $$f_\&(a, b) = c_0 + c_1 \cdot a + c_b \cdot b + c_{aa} \cdot a^2 + c_{ab} \cdot a \cdot b + c_{bb} \cdot b^2.$$

- **Properties:**

 - the function $f_\&(a, b)$ is monotonic (non-decreasing) in each variable;
 - $f_\&$ is conservative in the sense that it coincides with the usual logical operation $a \& b$ for $a, b \in \{0, 1\}$:
 $$f_\&(0, 0) = f_\&(0, 1) = f_\&(1, 0) = 0; \quad f_\&(1, 1) = 1.$$

- **Result** (H.T. Nguyen, V. Kreinovich): the only quadratic and-operation with these properties is $f_\&(a, b) = a \cdot b$.

- **Comment:** we did not use commutativity or associativity.
6. Description of All Quadratic Or-Operations

- Consider quadratic functions $f_\lor : [0, 1] \times [0, 1] \rightarrow [0, 1]$:
 \[f_\lor(a, b) = c_0 + c_1 \cdot a + c_b \cdot b + c_{aa} \cdot a^2 + c_{ab} \cdot a \cdot b + c_{bb} \cdot b^2. \]

- **Properties:**
 - the function $f_\lor(a, b)$ is monotonic (non-decreasing) in each variable;
 - f_\lor is conservative in the sense that it coincides with the usual logical operation $a \lor b$ for $a, b \in \{0, 1\}$:
 \[f_\lor(0, 0) = 0, \quad f_\lor(0, 1) = f_\lor(1, 0) = f_\land(1, 1) = 1. \]

- **Result:** the only quadratic and-operation with these properties is
 $f_\lor(a, b) = a + b - a \cdot b$.

- **Comment:** we did not use commutativity or associativity.
7. **Negation Operations: Usual Properties**

- **Main algebraic property:**
 - **Fact:** \(\neg(\neg A) \) means the same as \(A \).
 - **Property:** the negation operation \(f_{\neg}(a) \) must satisfy the property:
 \[
 f_{\neg}(f_{\neg}(a)) = a.
 \]

- **Monotonicity:** the more we believe in \(A \), the less we believe in \(\neg A \).

- **Conclusion:** the function \(f_{\neg}(a) \) must be non-increasing.

- **Conservative:** for \(a = 0 \) (“false”) and for \(a = 1 \) (“true”), \(f_{\neg}(a) \) must coincide with the truth value of “not \(a \)”:
 \[
 f_{\neg}(0) = 1, \quad f_{\neg}(1) = 0.
 \]
8. Description of All Quadratic Negation Operations

- Consider quadratic functions $f_\neg : [0, 1] \to [0, 1]$:
 \[
 f_\neg(a) = c_0 + c_1 \cdot a + c_{aa} \cdot a^2. \tag{1}
 \]

- **Properties:**

 - the function $f_\neg(a)$ satisfies the property
 \[
 f_\neg(f_\neg(a)) = a \text{ for all } a;
 \]

 - f_\neg is *conservative* in the sense that it coincides with the usual logical operation $\neg a$ for $a \in \{0, 1\}$:
 \[
 f_\neg(0) = 1, \quad f_\neg(1) = 0.
 \]

- **Result:** the only quadratic negation operation with these properties is $f_\neg(a) = 1 - a$.

- **Comment:** we did not use monotonicity.
9. Description of All Fractional-Linear Negation Operations

- Consider fractional-linear functions \(f_{\neg} : [0,1] \rightarrow [0,1] \):
 \[
 f_{\neg}(a) = \frac{a + b \cdot x}{c + d \cdot x}.
 \]

- Properties:
 - the function \(f_{\neg}(a) \) satisfies the property
 \[
 f_{\neg}(f_{\neg}(a)) = a \text{ for all } a;
 \]
 - \(f_{\neg} \) is conservative in the sense that it coincides with the usual logical operation \(\neg a \) for \(a \in \{0,1\} \):
 \[
 f_{\neg}(0) = 1, \quad f_{\neg}(1) = 0.
 \]
 - Result: the only fractional-linear negation operation with these properties is \(f_{\neg}(a) = 1 - a \).
 - Comment: we did not use monotonicity.
10. Proof of the Result about Quadratic Negation Operations

- **General formula:** \(f_\neg(a) = c_0 + c_1 \cdot a + c_{aa} \cdot a^2 \).

- The condition \(f_\neg(0) = 1 \) leads to \(c_0 = 1 \).

- Now, the condition \(f_\neg(1) = 0 \) leads to \(c_{aa} = -1 - c_a \).

- Hence, \(f_\neg(a) = 1 - a^2 + c_a \cdot (a - a^2) \).

- For this expression, the condition \(f_\neg(f_\neg(a)) - a = 0 \) takes the form:

\[
(-1 - 2c_a - c_a^2) \cdot a + (2 + 3c_a - c_a^3) \cdot a^2 + (c_a + 2c_a^2 + c_a^3) \cdot a^3 + (-1 - 3c_a - 3c_a^2 - c_a^3) \cdot a^4 = 0.
\]

- **Comment:** we combined terms corresponding to different powers of \(a \).
11. Proof (cont-d)

• **Reminder:** for all a, we have

 \[
 (-1 - 2c_a - c_a^2) \cdot a + (2 + 3c_a - c_a^3) \cdot a^2 + \\
 (c_a + 2c_a^2 + c_a^3) \cdot a^3 + (-1 - 3c_a - 3c_a^2 - c_a^3) \cdot a^4 = 0.
 \]

• **Fact:** a polynomial is equal to zero only when all the coefficients are equal to zero.

• **Conclusion:** $-1 - 2c_a - c_a^2 = 0$, $2 + 3c_a - c_a^3 = 0$,

 \[
 c_a + 2c_a^2 + c_a^3 = 0, \quad -1 - 3c_a - 3c_a^2 - c_a^3 = 0.
 \]

• First equation means $-(1 + c_a)^2 = 0$, hence $1 + c_a = 0$ and $c_a = -1$.

• For $c_a = -1$, the formula $f_\neg(a) = 1 - a^2 + c_a \cdot (a - a^2)$ turns into $f_\neg(a) = 1 - a^2 - (a - a^2) = 1 - a$.

• So, $f_\neg(a) = 1 - a$ is the only quadratic negation operation. The result is proven.
12. Acknowledgments

- This work was supported in part by the Computer Science Department, University of Texas at El Paso.
- The author is thankful to Vladik Kreinovich for his encouragement.