If a Polynomial Mapping Is Rectifiable, then the Rectifying Polynomial Automorphism Can Be Algorithmically Computed

Julio Urenda1,2, David Finston1, and Vladik Kreinovich3
1Department of Mathematical Sciences
New Mexico State University, Las Cruces, NM 88003, USA
jcurenda@utep.edu, dfinston@nmsu.edu
2Department of Mathematical Sciences
3Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA, vladik@utep.edu
1. Formulation of the Problem

- Let \mathbb{C} denote the field of all complex numbers.
- A polynomial mapping $\alpha : \mathbb{C}^n \rightarrow \mathbb{C}^n$ is called a polynomial automorphism if:
 - this mapping a bijection, and
 - the inverse mapping $\beta = \alpha^{-1}$ is also polynomial.
- A polynomial mapping $\varphi : \mathbb{C}^k \rightarrow \mathbb{C}^n$ is called rectifiable if:
 - these exists a polynomial automorphism $\alpha : \mathbb{C}^n \rightarrow \mathbb{C}^n$
 - for which $\alpha(\varphi(t_1, \ldots, t_k)) = (t_1, \ldots, t_k, 0, \ldots)$ for all (t_1, \ldots, t_k).
- Most existing proofs of rectifiability just prove the existence of a rectifying automorphism α.
- In this talk, we show how to compute α.
2. Definitions

• We will formulate two versions of the main result:
 – for the case when the coefficients of the original polynomial mapping are algebraic numbers, and
 – for the general case, when these coefficients are not necessarily algebraic.

• A number is called *algebraic* if this number is a root of a non-zero polynomial with integer coefficients.

• In the computer, an algebraic real number can be represented by:
 – the integer coefficients of the corresponding polynomial and
 – by a rational-valued interval that contains only this root.

• Once this information is given, we can compute the corresponding root with any given accuracy.
3. First Result

• Lemma.
 – If a polynomial mapping \(\varphi \) with algebraic coefficients is rectifiable,
 – then there exists a rectifying polynomial automorphism \(\alpha \) with algebraic coefficients.

• Proposition. There exists an algorithm that:
 – given a rectifiable polynomial mapping \(\varphi \) with algebraic coefficients,
 – computes the coefficients of a polynomial automorphism \(\alpha \) that rectifies \(\varphi \).
4. Need for a General Case

- In general, the coefficients of the original mapping φ are not necessarily algebraic.
- These coefficients may not even be computable.
- It is desirable to extend this algorithm to this general case.
- When the coefficients are not necessarily computable, we cannot represent them in a computer.
- So, we need to extend the usual notion of an algorithm to cover this case.
5. Definitions

- By a *generalized algorithm*, we mean a sequence of the following elementary operations with real numbers:
 - adding, subtracting, multiplying, and dividing numbers;
 - checking whether a number is equal to 0, whether it is positive, and whether it is negative;
 - given the coefficients of a polynomial that has a root, returning one of the roots.

- Of course, when the real numbers are algebraic, these operations are algorithmically computable.
6. Second Result

• **Proposition.** There exists a generalized algorithm that:

 – given the coefficients of a rectifiable polynomial mapping \(\varphi \),

 – computes the coefficients of a polynomial automorphism \(\alpha \) that rectifies \(\varphi \).

• This shows that:

 – if a polynomial mapping is rectifiable,

 – then the corresponding rectification can be algorithmically computed.
7. Discussion

- Our proof uses the Tarski algorithm.
- As the length ℓ of the formula increases, the running time of this algorithm grows faster than $2^{2\ell}$.
- Thus, from the application viewpoint, it is desirable to come up with a faster algorithm.
- For some important cases, such faster algorithms were also proposed.
- These faster algorithms can be applied to other fields (and rings) as well.
- They are described in J. Urenda’s NMSU PhD dissertation *Algorithmic Aspects of the Embedding Problem*.
8. Tarski-Seidenberg Algorithm: Reminder

- This algorithm deals with the \textit{first-order theory of real numbers}: follows:
 - we start with real-valued variables x_1, \ldots, x_n;
 - \textit{elementary formulas:} $P = 0$, $P > 0$, or $P \geq 0$, where P is a polynomial with integer coefficients;
 - a general formula can be obtained from elementary formulas by using:
 - \textbf{logical connectives} (“and” \&, “or” \lor, “implies” \rightarrow, and “not” \neg) and
 - \textbf{quantifiers} over real numbers ($\forall x_i$ and $\exists x_i$).
- Example: every quadratic polynomial with non-negative determinant has a solution:
 $\forall a \forall b \forall c ((b^2 - 4a \cdot c \geq 0) \rightarrow \exists x (a \cdot x^2 + b \cdot x + c = 0))$.
9. Tarski-Seidenberg Algorithm (cont-d)

- Tarski designed an algorithm that:
 - given a formula from this theory,
 - returns 0 or 1 depending on whether this formula is true or not.

- Seidenberg used a similar construction to
 - reduce each first-order formula with free variables
 - to a quantifier-free form.

- It follows that if a formula with free variables has a solution, then it also has an algebraic solution.
10. Proof of Lemma

- Let \(d \) be the largest degree of polynomials \(\alpha_i \) and \(\beta_i \) forming the mappings \(\alpha \) and \(\beta = \alpha^{-1} \).
- Each of these polynomial can be described by listing real and imaginary values of all its coefficients.
- The condition that \(\alpha \) and \(\beta \) are inverse to each other means that \(\forall z_1 \ldots \forall z_n (\&_i \alpha_i(\beta(z_1, \ldots, z_n)) = z_i) \) and \(\forall z_1 \ldots \forall z_n (\&_j \beta_j(\alpha(z_1, \ldots, z_n)) = z_j) \).
- Substituting the expressions for \(\alpha \) and \(\beta \) in terms of their coefficients, we get a first order formula.
- Similarly, the condition that \(\alpha \) rectifies \(\varphi \) is \(\forall t_1 \ldots \forall t_k (\&_\ell \alpha_\ell(\varphi(t_1, \ldots, t_k) = t_\ell) \) – a first-order formula.
- Thus, if \(\exists \) a solution, then \(\exists \) a solution in which all coefficients of all polynomials \(\alpha_i \) and \(\beta_i \) are algebraic.
11. Proof of First Result

- Due to Tarski’s algorithm:
 - for each tuple of algebraic numbers,
 - we can check whether the corresponding polynomials constitute a rectifying automorphism.

- To find the desired polynomial mappings α and β with algebraic coefficients, it is sufficient to:
 - enumerate all possible tuples of such coefficients,
 - try them one by one,
 - until we find a tuple which corresponds to the rectifying automorphism.

- Since we assumed that a rectification is possible, we will eventually find the desired coefficient.

- The only thing that needs to be clarified is how to enumerate all possible tuples of algebraic numbers.
12. Proof of First Result (cont-d)

- We need to enumerate all possible tuples of algebraic numbers.
- This can be easily done if we take into account that:
 - each algebraic number is represented in a computer
 - as a sequence of integers.
- It is easy to come with an algorithm that enumerates all possible sequences of integers.
- For example, for $M = 0, 1, \ldots$, we can enumerate all the sequences (n_1, \ldots, n_k) for which

 \[|n_1| + \ldots + |n_k| + k = M. \]

- For each M, there are finitely many such sequences, and it is easy to enumerate them all.
- The proposition is thus proven.
13. Proof of Second Result

- For each degree d, the Tarski-Seidenberg algorithm
 - reduces the formula describing the existing of a rectifying polynomial automorphism of degree d
 - to a finite list of (in)equalities between expressions polynomially depending on the given coefficients.
- In our definition of a generalized algorithm, we allowed:
 - additions and multiplications (all we need to compute the value of a polynomial) and
 - checking whether a given value is equal to 0 or greater than 0.
- So, $\forall d \exists$ a generalized algorithm that checks whether \exists a rectifying polynomial automorphism of degree d.
14. Proof of Second Result (cont-d)

• Since we assume that a rectification is possible:
 – by trying all possible degrees \(d = 0, 1, 2 \ldots \),
 – we will eventually find \(d \) for which \(\exists \) a rectifying rectifying polynomial automorphism of degree \(d \).

• To complete the proof, we need to compute the coefficients of the corresponding polynomial mapping \(\alpha \).

• We want to find the coefficients \(c_1, \ldots, c_N \) that satisfy a quantifier-free formula \(F(c_1, \ldots, c_N) = 0 \).

• Let’s find \(c_1 \) s.t. \(\exists c_2 \ldots \exists c_N (F(c_1, c_2, \ldots, c_N) = 0) \).

• We can use Tarski-Seidenberg theorem to reduce this formula to a sequence of formulas

\[
P_i(c_1) = 0 \text{ and } P_j(c_1) > 0.
\]
15. Proof of Second Result (cont-d)

- All equalities $P_i(c_1)$ be combined into a single equality $P(c_1) = 0$, where $P(c_1) \overset{\text{def}}{=} \sum_i (P_i(c_1))^2$.

- We know that this polynomial equation has a solution.

- We can therefore use one of the elementary steps of a generalized algorithm to compute a solution to it.

- If the solution s produced by this elementary step does not satisfy the inequalities, then:
 - we get a new polynomial of a smaller degree
 - by dividing $P(c_1)$ by $c_1 - s$.

- It is clear that c_1 is a root of this polynomial.

- Division is algorithmic since it can also be reduced to (allowed) arithmetic operations with coefficients.
16. Proof of Second Result: Conclusion

- We can then repeat this procedure with the new polynomial of smaller degree, etc.
- At each step, either we find the desired c_1 or the degree decreases.
- Since the degree cannot decrease below 0, this means that we will eventually find c_1.
- Substituting this value c_1 into the above formula, we will then similarly compute a value c_2 for which
 \[\exists c_3 \ldots \exists c_N \ (F(c_1, c_2, c_3, \ldots, c_N) = 0), \text{ etc.} \]
- After N steps, we will compute all the coefficients of the rectifying polynomial α.
- The proposition is proven.
17. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence), and
- DUE-0926721.
18. References