Why Linear Interpolation?

Andrzej Pownuk and Vladik Kreinovich

Computational Science Program
University of Texas at El Paso
500 W. University
El Paso, Texas 79968, USA
ampownuk@utep.edu, vladik@utep.edu
1. Need for Interpolation

- In many practical situations:
 - we know that the value of a quantity y is uniquely determined by the value of some other quantity x,
 - but we do not know the exact form of the corresponding dependence $y = f(x)$.

- To find this dependence, we measure the values of x and y in different situations.

- As a result, we get the values $y_i = f(x_i)$ of the unknown function $f(x)$ for several values x_1, \ldots, x_n.

- Based on this information, we would like to predict the value $f(x)$ for all other values x.

- When x is between the smallest and the largest of the values x_i, this prediction is known as the interpolation.
2. Why Linear Interpolation?

- Let’s consider the case $n = 2$. Let’s assume that $f(x)$ is linear on $[x_1, x_2]$; then
 \[f(x) = \frac{x - x_1}{x_2 - x_1} \cdot f(x_2) + \frac{x_2 - x}{x_2 - x_1} \cdot f(x_1). \]
- This formula is known as linear interpolation.
- The usual motivation for linear interpolation is simplicity: linear functions are the easiest to compute.
- An interesting empirical fact is that in many practical situations, linear interpolation works reasonably well.
- We know that in computational science, often very complex computations are needed.
- So we cannot claim that nature prefers simplicity.
- There should be another reason for the empirical fact that linear interpolation often works well.
3. Reasonable Properties of Interpolation

- We want to be able,
 - given values \(y_1 \) and \(y_2 \) of the unknown function at points \(x_1 \) and \(x_2 \), and a point \(x \in (x_1, x_2) \),
 - to provide an estimate for \(f(x) \).

- Let us denote this estimate by \(I(x_1, y_1, x_2, y_2, x) \); what are the reasonable properties of this function?

- If \(y_i = f(x_i) \leq y \) for both \(i \), it is reasonable to expect that \(f(x) \leq y \).

- In particular, for \(y = \max(y_1, y_2) \), we conclude that \(I(x_1, y_1, x_2, y_2, x) \leq \max(y_1, y_2) \).

- Similarly, if \(y \leq y_i \) for both \(i \), it is reasonable to expect that \(y \leq f(x) \).

- In particular, for \(y = \min(y_1, y_2) \), we conclude that \(\min(y_1, y_2) \leq I(x_1, y_1, x_2, y_2, x) \).
4. \textit{x-Scale-Invariance}

- The numerical value of a physical quantity depends:
 - on the choice of the measuring unit and
 - on the starting point.

- If we change the starting point to the one which is \(b \) units smaller, then \(b \) is added to all the values.

- If we replace a measuring unit by a \(a > 0 \) times smaller one, then all the values are multiplied by \(a \).

- If we perform both changes, then each original value \(x \) is replaced by the new value \(x' = a \cdot x + b \).

- For example, if we know the temperature \(x \) in C, then the temperature \(x' \) in F is \(x' = 1.8 \cdot x + 32 \).

- The interpolation procedure should not change if we simply re-scale:

\[
I(a \cdot x_1 + b, y_1, a \cdot x_2 + b, y_2, a \cdot x + b) = I(x_1, y_1, x_2, y_2, x).
\]
5. **y- Scale-Invariance**

- Similarly, we can consider different units for y.
- The interpolation result should not change if we simply change the starting point and the measuring unit; so:
 - if we replace y_1 with $a \cdot y_1 + b$ and y_2 with $a \cdot y_2 + b$,
 - then the result of interpolation should be obtained by a similar transformation from the previous one:

$$I(x_1, a \cdot y_1 + b, x_2, a \cdot y_2 + b, x) = a \cdot I(x_1, y_1, x_2, y_2, x) + b.$$
6. Consistency

- When $x_1 \leq x_1' \leq x \leq x_2' \leq x_2$, the value $f(x)$ can be estimated in two different ways.
- We can interpolate directly from the values $y_1 = f(x_1)$ and $y_2 = f(x_2)$, getting $I(x_1, y_1, x_2, y_2, x)$.
- Or we can:
 - first estimate the values $f(x_1') = I(x_1, y_1, x_2, y_2, x_1')$ and $f(x_2') = I(x_1, y_1, x_2, y_2, x_2')$, and
 - then use these two estimates to estimate $f(x)$ as
 \[
 I(x_1, f(x_1'), x_2, f(x_2'), x) = I(x_1', I(x_1, y_1, x_2, y_2, x_1'), x_2', I(x_1, y_1, x_2, y_2, x_2'), x).
 \]
- It is reasonable to require that these two ways lead to the same estimate for $f(x)$: $I(x_1, y_1, x_2, y_2, x) =$
 \[
 I(x_1', I(x_1, y_1, x_2, y_2, x_1'), x_2', I(x_1, y_1, x_2, y_2, x_2'), x).
 \]
7. Continuity

- Most physical dependencies are continuous.
- Thus, when the two value x and x' are close, we expect the estimates for $f(x)$ and $f(x')$ to be also close.
- Thus, it is reasonable to require that:
 - the interpolation function $I(x_1, y_1, x_2, y_2, x)$ is continuous in x, and
 - that for both $i = 1, 2$, $I(x_1, y_1, x_2, y_2, x)$ converges to $f(x_i)$ when $x \to x_i$.
8. Resulting Definition

A function \(I(x_1, y_1, x_2, y_2, x) \) defined for \(x_1 < x < x_2 \) is called an interpolation function if:

- \(\min(y_1, y_2) \leq I(x_1, y_1, x_2, y_2, x) \leq \max(y_1, y_2) \);
- \(I(a \cdot x_1 + b, y_1, a \cdot x_2 + b, y_2, a \cdot x + b) = I(x_1, y_1, x_2, y_2, x) \) for all \(x_i, y_i, x, a > 0 \), and \(b \) (\(x \)-scale-invariance);
- \(I(x_1, a \cdot y_1 + b, x_2, a \cdot y_2 + b, x) = a \cdot I(x_1, y_1, x_2, y_2, x) + b \) for all \(x_i, y_i, x, a > 0 \), and \(b \) (\(y \)-scale invariance);
- consistency: \(I(x_1, y_1, x_2, y_2, x) = I(x_1', I(x_1, y_1, x_2, y_2, x'), x_2', I(x_1, y_1, x_2, y_2, x')', x) \);
- continuity:
 - the expression \(I(x_1, y_1, x_2, y_2, x) \) is a continuous function of \(x \),
 - \(I(x_1, y_1, x_2, y_2, x) \to y_1 \) when \(x \to x_1 \) and \(I(x_1, y_1, x_2, y_2, x) \to y_2 \) when \(x \to x_2 \).
9. Main Result

- **Result:** The only interpolation function satisfying all the properties is the linear interpolation
 \[I(x_1, y_1, x_2, y_2, x) = \frac{x - x_1}{x_2 - x_1} \cdot y_2 + \frac{x_2 - x}{x_2 - x_1} \cdot y_1. \]

- Thus, we have indeed explained that linear interpolation follows from the fundamental principles.
- This may explain its practical efficiency.
10. Proof

- When \(y_1 = y_2 \), the conservativeness property implies that \(I(x_1, y_1, x_2, y_1, x) = y_1 \).

- Thus, to complete the proof, it is sufficient to consider two remaining cases: when \(y_1 < y_2 \) and when \(y_2 < y_1 \).

- We will consider the case when \(y_1 < y_2 \).

- The case when \(y_2 < y_1 \) is considered similarly.

- So, in the following text, without losing generality, we assume that \(y_1 < y_2 \).
11. Using y-Scale-Invariance

- When $y_1 < y_2$, then $y_1 = a \cdot 0 + b$ and $y_2 = a \cdot 1 + b$ for $a = y_2 - y_1$ and y_1.

- Thus, the y-scale-invariance implies that

$$I(x_1, y_1, x_2, y_2, x) = (y_2 - y_1) \cdot I(x_1, 0, x_2, 1, x) + y_1.$$

- If we denote $J(x_1, x_2, x) \overset{\text{def}}{=} I(x_1, 0, x_2, 1, x)$, then we get

$$I(x_1, y_1, x_2, y_2, x) = (y_2 - y_1) \cdot J(x_1, x_2, x) + y_1 = J(x_1, x_2, x) \cdot y_2 + (1 - J(x_1, x_2, x)) \cdot y_1.$$
12. Using x-Scale-Invariance

- Since $x_1 < x_2$, we have $x_1 = a \cdot 0 + b$ and $x_2 = a \cdot 1 + b$, for $a = x_2 - x_1$ and $b = x_1$.

- Here, $x = a \cdot r + b$, where $r = \frac{x - b}{a} = \frac{x - x_1}{x_2 - x_1}$.

- Thus, the x-scale invariance implies that $J(x_1, x_2, x) = w \left(\frac{x - x_1}{x_2 - x_1} \right)$, where $w(r) \overset{\text{def}}{=} J(0, 1, r)$.

- Thus, the above expression for $I(x_1, y_1, x_2, y_2, x)$ in terms of $J(x_1, x_2, x)$ takes the following simplified form:

$$w \left(\frac{x - x_1}{x_2 - x_1} \right) \cdot y_2 + \left(1 - w \left(\frac{x - x_1}{x_2 - x_1} \right) \cdot y_2 \right) \cdot y_1.$$

- To complete our proof, we need to show that $w(r) = r$ for all $r \in (0, 1)$.
13. Using Consistency

- Let us take $x_1 = y_1 = 0$ and $x_2 = y_2 = 1$, then
 \[I(0, 0, 1, 1, x) = w(x) \cdot 1 + (1 - w(x)) \cdot 0 = w(x). \]

- For $x = 0.25 = \frac{0 + 0.5}{2}$, the value $w(0.25)$ can be obtained by interpolating $w(0) = 0$ and $\alpha \overset{\text{def}}{=} w(0.5)$:
 \[w(0.25) = \alpha \cdot w(0.5) + (1 - \alpha) \cdot w(0) = \alpha^2. \]

- For $x = 0.75 = \frac{0.5 + 1}{2}$, we similarly get:
 \[w(0.75) = \alpha \cdot w(1) + (1 - \alpha) \cdot w(0.5) = \alpha \cdot 1 + (1 - \alpha) \cdot \alpha = 2\alpha - \alpha^2. \]

- $w(0.5)$ can be interpolated from $w(0.25)$ and $w(0.75)$:
 \[w(0.5) = \alpha \cdot w(0.75) + (1 - \alpha) \cdot w(0.25) = \alpha \cdot (2\alpha - \alpha^2) + (1 - \alpha) \cdot \alpha^2 = 3\alpha^2 - 2\alpha^3. \]

- By consistency, this estimate should be equal to our original estimate $w(0.5) = \alpha$: $3\alpha^2 - 2\alpha^3 = \alpha$.
14. What Is α

- Here, $\alpha = w(0.5) = 0$, $\alpha = 1$, or $\alpha = 0.5$.
- If $\alpha = 0$, then, $w(0.75) = \alpha \cdot w(1) + (1 - \alpha) \cdot w(0.5) = 0$.
- By induction, we can show that $\forall n \ (w(1 - 2^{-n}) = 0)$ for each n.
- Here, $1 - 2^{-n} \to 1$, but $w(1 - 2^{-n}) \to 0$, which contradicts to continuity $w(1 - 2^{-n}) \to w(1) = 1$.
- Thus, $\alpha = 0$ is impossible.
- When $\alpha = w(0.5) = 1$, then
 \[w(0.25) = \alpha \cdot w(0.5) + (1 - \alpha) \cdot w(0) = 1. \]
- By induction, $w(2^{-n}) = 1$ for each n.
- In this case, $2^{-n} \to 0$, but $w(2^{-n}) \to 1$, which contradicts to continuity $w(2^{-n}) \to w(0) = 0$.
- Thus, $\alpha = 0.5$.

15. Proof: Final Part

• For \(\alpha = 0.5 \): \(w(0) = 0, w(0.5) = 0.5, w(1) = 1 \).

• Let us prove, by induction over \(q \), that for every binary-rational number \(r = \frac{p}{2^q} \in [0, 1] \), we have \(w(r) = r \).

• Indeed, the base case \(q = 1 \) is proven.

• Let us assume that we have proven it for \(q - 1 \).

• If \(p \) is even \(p = 2k \), then \(\frac{2k}{2^q} = \frac{k}{2^{q-1}} \), so the desired equality comes from the induction assumption.

• If \(p = 2k + 1 \), then \(r = \frac{p}{2^q} = \frac{2k + 1}{2^q} =

\[
0.5 \cdot \frac{2k}{2^q} + 0.5 \cdot \frac{2 \cdot (k + 1)}{2^q} = 0.5 \cdot \frac{k}{2^{q-1}} + 0.5 \cdot \frac{k + 1}{2^{q-1}}.
\]

• So \(w(r) = 0.5 \cdot w \left(\frac{k}{2^{q-1}} \right) + 0.5 \cdot w \left(\frac{k + 1}{2^{q-1}} \right) \).
16. Proof: Final Part (cont-d)

- By induction assumption, we have
 \[w\left(\frac{k}{2^{q-1}}\right) = \frac{k}{2^{q-1}} \text{ and } w\left(\frac{k+1}{2^{q-1}}\right) = \frac{k+1}{2^{q-1}}. \]

- Thus, \(w(r) = \alpha \cdot \frac{k}{2^{q-1}} + 0.5 \cdot \frac{k+1}{2^{q-1}} = \frac{2k + 1}{2^q} = r. \)

- The equality \(w(r) = r \) is hence true for all binary-rational numbers.

- Any real number \(x \) from the interval \([0, 1]\) is a limit of such numbers – truncates of its binary expansion.

- Thus, by continuity, we have \(w(x) = x \) for all \(x \).

- Substituting \(w(x) = x \) into the above formula for \(I(x_1, y_1, x_2, y_2, x) \) leads to linear interpolation. Q.E.D.
17. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and

- by an award from Prudential Foundation.