Equations Without Equations: Challenges on a Way to a More Adequate Formalization of Reasoning in Physics

Roberto Araiza1 and Vladik Kreinovich1,2
1Bioinformatics Program
2Department of Computer Science
University of Texas, El Paso, TX 79968, USA
raraiza@utep.edu, vladik@utep.edu
1. Need to Formalize Reasoning in Physics

- **Fact:** in medicine, geophysics, etc., expert systems use automated expert reasoning to help the users.

- **Hope:** similar systems may be helpful in general theoretical physics as well.

- **What is needed:** describe physicists’ reasoning in precise terms.

- **Reason:** formalize this reasoning inside an automated computer system.

- **Formalized part of physicists’ reasoning:** theories are formulated in terms of PDEs (or ODEs) \(\frac{dx}{dt} = F(x) \).

- **Meaning:** these equations describe how the corresponding fields (or quantities) \(x \) change with time \(t \).
2. Mathematician’s View of Physics and Its Limitations

- **Mathematician’s view:** we know the initial conditions \(x(t_0) \) at some moment of time \(t_0 \).
- We solve the corresponding Cauchy problem and find the values \(x(t) \) for all \(t \).
- **Limitation:** not all solutions to the equation \(\frac{dx}{dt} = F(x) \) are physically meaningful.
- **Example 1:** when a cup breaks into pieces, the corresponding trajectories of molecules make physical sense.
- **Example 2:** when we reverse all the velocities, we get pieces assembling themselves into a cup.
- **Fact:** this is physically impossible.
- **Fact:** the reverse process satisfies all the original (T-invariant) equations.
3. **Physicists’ Explanation**

- **Reminder**: not all solutions to the physical equation are physically meaningful.

- **Explanation**: the “time-reversed” solution is non-physical because its initial conditions are “degenerate”.

- **Clarification**: once we modify the initial conditions even slightly, the pieces will no longer get together.

- **Conclusion**: not only the equations must be satisfied, but also the initial conditions must be “non-degenerate”.

- **Two challenges** in formalizing this idea:
 - how to formalize “non-degenerate”;
 - the separation between equations and initial conditions depends on the way equations are presented.

- **First challenge**: can be resolved by using Kolmogorov complexity and randomness.
4. First Example: Schrödinger’s Equation

- Example: Schrödinger’s equation
 \[
 i\hbar \cdot \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \cdot \nabla^2 \Psi + V(\vec{r}) \cdot \Psi.
 \]

- In this representation: the potential \(V \) is a part of the equation, and \(\Psi(\vec{r}, t_0) \) are initial conditions.

- Transformation:
 - we represent \(V(\vec{r}) \) as a function of \(\Psi \) and its derivatives,
 - differentiate the right-hand side by time, and
 - equate the derivative w.r.t. time to 0.

- Result:
 \[
 \frac{\partial}{\partial t} \left(\frac{i\hbar}{\Psi} \cdot \frac{\partial \Psi}{\partial t} + \frac{\hbar^2}{2m} \cdot \nabla^2 \Psi \right) = 0.
 \]
5. First Example (cont-d)

- **Reminder:**
 \[
 \frac{\partial}{\partial t} \left(\frac{i\hbar}{\Psi} \cdot \frac{\partial \Psi}{\partial t} + \frac{\hbar^2}{2m} \cdot \nabla^2 \Psi \right) = 0.
 \]

- **Mathematically:** the new equation (2nd order in time) is equivalent to the Schrödinger’s equation:
 - every solution of the Schrödinger’s equation for any \(V(\vec{r}) \) satisfies this new equation, and
 - every solution of the new equation satisfies Schrödinger’s equation for some \(V(\vec{r}) \).

- **Observation:** in the new equation, initial conditions, in effect, include \(V(\vec{r}) \).

- **Conclusion:** “non-degeneracy” ("randomness") condition must now include \(V(\vec{r}) \) as well.
6. Second Example: General Scalar Field

- **Example:** consider a scalar field φ with a generic Lagrange function $L(\varphi, a)$, with $a \overset{\text{def}}{=} \varphi,_{i}\varphi,_{i}$.

- **Traditional formulation:** every Lagrangian is possible, but initial conditions $\varphi(x, t_0)$ must be non-degenerate.

- **Euler equations:**

$$
\frac{\partial L}{\partial \varphi} - \partial_i \frac{\partial L}{\partial \varphi,_{i}} = L,_{\varphi} - \partial_i (2L,_{a} \cdot \varphi,_{i}) = 0:
$$

$$
L,_{\varphi} - 2L,_{a} \cdot \Box \varphi - 2L,_{a} \varphi \cdot (\varphi,_{i}\varphi,^{i}) - 4L,_{aa} \cdot \varphi,_{ij}\varphi,^{i}\varphi,^{j} = 0.
$$

- In general, on a 3-D Cauchy surface $t = t_0$, we can find points with arbitrary combination of $(\varphi, \varphi,_{i}\varphi,^{i}, \Box \varphi)$.

- Thus, by observing the evolution, we can find $\varphi,_{ij}\varphi,^{i}\varphi,^{j}$ for all possible triples $(\varphi, \varphi,_{i}\varphi,^{i}, \Box \varphi)$.

- So, we can predict future evolution – w/o knowing L.
7. **Scalar Field: Discussion and Conclusions**

- **Observation:** the new “equation” does not contain L at all.

- **Fact:** a field φ satisfies the new equation \iff it satisfies the Euler-Lagrange equations for *some* L.

- **Observation:**
 - similarly to Wheeler’s cosmological “mass without mass” and “charge without charge”,
 - we now have “equations without equations”.

- **Conclusion:** when formalizing physical equations:
 - we must not only describe them in a mathematical form,
 - we must also select *one* of the mathematically equivalent forms.
8. Acknowledgments

This work was supported in part:

- by National Science Foundation grant HRD-0734825, and EAR-0225670 and DMS-0532645 and

- by Grant 1 T36 GM078000-01 from the National Institutes of Health.
9. Physicists Assume that Initial Conditions and Values of Parameters are Not Abnormal

- To a mathematician, the main contents of a physical theory is its equations.
- Not all solutions of the equations have physical sense.
- *Ex. 1*: Brownian motion comes in one direction;
- *Ex. 2*: implosion glues shattered pieces into a statue;
- *Ex. 3*: fair coin falls heads 100 times in a row.
- *Mathematics*: it is possible.
- *Physics* (and common sense): it is not possible.
- *Our objective*: supplement probabilities with a new formalism that more accurately captures the physicists’ reasoning.
10. A Seemingly Natural Formalizations of This Idea

- **Physicists**: only “not abnormal” situations are possible.

- **Natural formalization**: idea.
 - If a probability \(p(E) \) of an event \(E \) is small enough,
 - then this event cannot happen.

- **Natural formalization**: details. There exists the “smallest possible probability” \(p_0 \) such that:
 - if the computed probability \(p \) of some event is larger than \(p_0 \), then this event can occur, while
 - if the computed probability \(p \) is \(\leq p_0 \), the event cannot occur.

- **Example**: a fair coin falls heads 100 times with prob. \(2^{-100} \); it is impossible if \(p_0 \geq 2^{-100} \).
11. The Above Formalization of the Notion of “Typical” is Not Always Adequate

- **Problem:** every sequence of heads and tails has exactly the same probability.

- **Corollary:** if we choose $p_0 \geq 2^{-100}$, we will thus exclude all sequences of 100 heads and tails.

- However, anyone can toss a coin 100 times.

- This proves that some such sequences are physically possible.

- **Similar situation:** Kyburg’s lottery paradox:
 - in a big (e.g., state-wide) lottery, the probability of winning the Grand Prize is very small;
 - a reasonable person should not expect to win;
 - however, some people do win big prizes.
12. New Idea

- **Example:** height:
 - if height is ≥ 6 ft, it is still normal;
 - if instead of 6 ft, we consider 6 ft 1 in, 6 ft 2 in, etc., then $\exists h_0$ s.t. everyone taller than h_0 is abnormal;
 - we are not sure what is h_0, but we are sure such h_0 exists.

- **General description:** on the universal set U, we have sets $A_1 \supseteq A_2 \supseteq \ldots \supseteq A_n \supseteq \ldots$ s.t. $\cap A_n = \emptyset$.

- **Example:** $A_1 =$ people w/height ≥ 6 ft, $A_2 =$ people w/height ≥ 6 ft 1 in, etc.

- A set $T \subseteq U$ is called a set of typical (not abnormal) elements if

 $$\forall$$ definable sequence of sets A_n for which $A_n \supseteq A_{n+1}$ for all n and $\cap A_n = \emptyset$, $\exists N$ for which $A_N \cap T = \emptyset$.
13. Coin Example

- Universal set $U = \{H, T\}^\mathbb{N}$

- Here, A_n is the set of all the sequences that start with n heads and have at least one tail.

- The sequence $\{A_n\}$ is decreasing and definable, and its intersection is empty.

- Therefore, for every set T of typical elements of U, there exists an integer N for which $A_N \cap T = \emptyset$.

- This means that if a sequence $s \in T$ is not abnormal and starts with N heads, it must consist of heads only.

- *In physical terms:* it means that

 a random sequence (i.e., a sequence that contains both heads and tails) cannot start with N heads.

- This is exactly what we wanted to formalize.
14. Possible Practical Use of This Idea: When to Stop an Iterative Algorithm

- **Situation** in numerical mathematics:
 - we often know an iterative process whose results x_k are known to converge to the desired solution x,
 - but we do not know when to stop to guarantee that $d_X(x_k, x) \leq \varepsilon$.

- **Heuristic approach**: stop when $d_X(x_k, x_{k+1}) \leq \delta$ for some $\delta > 0$.

- **Example**: in physics, if 2nd order terms are small, we use the linear expression as an approximation.
15. Result

- Let \(\{x_k\} \in S \), \(k \) be an integer, and \(\varepsilon > 0 \) a real number.
- We say that \(x_k \) is \(\varepsilon \)-accurate if \(d_X(x_k, \lim x_p) \leq \varepsilon \).
- Let \(d \geq 1 \) be an integer.

- By a stopping criterion, we mean a function \(c : X^d \to R_0^+ = \{x \in R | x \geq 0\} \) that satisfies the following two properties:
 - If \(\{x_k\} \in S \), then \(c(x_k, \ldots, x_{k+d-1}) \to 0 \).
 - If for some \(\{x_n\} \in S \) and \(k \), \(c(x_k, \ldots, x_{k+d-1}) = 0 \), then \(x_k = \ldots = x_{k+d-1} = \lim x_p \).

- Result: Let \(c \) be a stopping criterion. Then, for every \(\varepsilon > 0 \), there exists a \(\delta > 0 \) such that
 - if \(c(x_k, \ldots, x_{k+d-1}) \leq \delta \), and the sequence \(\{x_n\} \) is not abnormal,
 - then \(x_k \) is \(\varepsilon \)-accurate.