Combining Interval and Probabilistic Uncertainty in Engineering Applications

Andrzej Pownuk

Computational Science Program
University of Texas at El Paso
El Paso, Texas 79968, USA
ampownuk@utep.edu
Part I
Introduction
1. Need for Data Processing

- One of the main objectives of science is to predict future values y of physical quantities:
 - in meteorology, we need to predict future weather;
 - in airplane control, we need to predict the location and the velocity of the plane under current control.

- To make this prediction:
 - we need to know the relation $y = f(x_1, \ldots, x_n)$ between y and related quantities x_1, \ldots, x_n;
 - then, we measure or estimate x_1, \ldots, x_n;
 - finally, we use the results \tilde{x}_i of measurement (or estimation) to compute an estimate
 $$\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n).$$

- This computation of \tilde{y} is an important case of data processing.
2. Need to Take Uncertainty Into Account When Processing Data

- Measurement are never absolutely accurate: in general,
 \[\Delta x_i \overset{\text{def}}{=} \tilde{x}_i - x_i \neq 0. \]

- As a result, the estimate \(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \) is, in general, different from the ideal value \(y = f(x_1, \ldots, x_n) \).

- To estimate the accuracy \(\Delta y \overset{\text{def}}{=} \tilde{y} - y \), we need to have some information about the measurement errors \(\Delta x_i \).

- Traditional engineering approach assumes that we know the probability distribution of each \(\Delta x_i \).

- Often, \(\Delta x_i \sim N(0, \sigma_i) \), and different \(\Delta x_i \) are assumed to be independent.

- In such situations, our goal is to find the probability distribution for \(\Delta y \).
3. Cases of Interval and Fuzzy Uncertainty

- Often, we only know the upper bound Δ_i: $|\Delta x_i| \leq \Delta_i$.

- Then, the only information about the x_i is that

 $$x_i \in x_i \overset{\text{def}}{=} [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i].$$

- Different $x_i \in x_i$ lead, in general, to different

 $$y = f(x_1, \ldots, x_n).$$

- We want to find the range y of possible values of y:

 $$y = \{f(x_1, \ldots, x_n) : x_1 \in x_1, \ldots, x_n \in x_n\}.$$

- To gauge the accuracy of expert estimates, it is reasonable to use fuzzy techniques, i.e., to describe:

 - for each possible value x_i,
 - the degree $\mu_i(x_i)$ to which x_i is possible.
4. Measurement and Estimation Inaccuracies Are Usually Small

- In many practical situations, the measurement and estimation inaccuracies Δx_i are relatively small.
- Then, we can safely ignore terms which are quadratic (or of higher order) in terms of Δx_i:
 \[
 \Delta y = \tilde{y} - y = f(\tilde{x}_1, \ldots, \tilde{x}_n) - f(\tilde{x}_1 - \Delta x_1, \ldots, \tilde{x}_n - \Delta x_n) = \sum_{i=1}^{n} c_i \cdot \Delta x_i, \text{ where } c_i = \frac{\partial f}{\partial x_i}.
 \]
- If needed, the derivative can be estimated by numerical differentiation
 \[
 c_i \approx \frac{f(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i + h, \tilde{x}_{i+1}, \ldots, \tilde{x}_n) - \tilde{y}}{h}.
 \]
5. Case of Interval Uncertainty

• Let us consider the case when \(\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i \).

• In this case, \(y = [\tilde{y} - \Delta, \tilde{y} + \Delta] \), where \(\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i \).

• Sometimes, we have explicit expressions or efficient algorithms for the partial derivatives \(c_i \).

• Often, however, we use proprietary software in our computations.

• Then, we cannot use differentiation formulas, but we can use numerical differentiation.

• Problem: We need \(n + 1 \) calls to \(f \), to compute \(\tilde{y} \) and \(n \) values \(c_i \).

• When \(f \) is time-consuming and \(n \) is large, this takes too long.
6. A Faster Method: Cauchy-Based Monte-Carlo

- **Idea:** use Cauchy distribution \(\rho_{\Delta}(x) = \frac{\Delta}{\pi} \cdot \frac{1}{1 + x^2/\Delta^2} \).

- **Why:** when \(\Delta x_i \sim \rho_{\Delta_i}(x) \) are indep., then
 \[
 \Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i \sim \rho_{\Delta}(x), \text{ with } \Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i.
 \]

- Thus, we simulate \(\Delta x^{(k)}_i \sim \rho_{\Delta_i}(x) \); then,
 \[
 \Delta y^{(k)} \overset{\text{def}}{=} \tilde{y} - f(\tilde{x}_1 - \Delta x^{(k)}_1, \ldots) \sim \rho_{\Delta}(x).
 \]

- Maximum Likelihood method can estimate \(\Delta \):
 \[
 \prod_{k=1}^{N} \rho_{\Delta}(\Delta y^{(k)}) \to \max, \text{ so } \sum_{k=1}^{N} \frac{1}{1 + (\Delta y^{(k)})^2/\Delta^2} = \frac{N}{2}.
 \]

- To find \(\Delta \) from this equation, we can use, e.g., the bisection method for \(\underline{\Delta} = 0 \) and \(\overline{\Delta} = \max_{1 \leq k \leq N} |\Delta y^{(k)}| \).
7. Monte-Carlo: Successes and Limitations

- **Fact:** for Monte-Carlo, accuracy is $\varepsilon \sim 1/\sqrt{N}$.

- **Good news:** the number N of calls to f depends only the desired accuracy ε.

- **Example:** to find Δ with accuracy 20% and certainty 95%, we need $N = 200$ iterations.

- **Limitation:** this method is *not realistic*; indeed:
 - we know that Δx_i is inside $[-\Delta_i, \Delta_i]$, but
 - Cauchy-distributed variable has a high probability to be *outside* this interval.

- **Natural question:** is it a limitation of our method, or of a problem itself?
8. Fuzzy Case: A Problem

Given: an algorithm $y = f(x_1, \ldots, x_n)$ and n fuzzy numbers $\mu_i(x_i)$.

Compute: $\mu(y) = \max_{x_1,\ldots,x_n: f(x_1,\ldots,x_n) = y} \min(\mu_1(x_1), \ldots, \mu_n(x_n))$.

Motivation: y is a possible value of $Y \leftrightarrow \exists x_1, \ldots, x_n$ s.t. each x_i is a possible value of X_i and $f(x_1, \ldots, x_n) = y$.

Details: “and” is min, \exists (“or”) is max, hence

$$\mu(y) = \max_{x_1,\ldots,x_n} \min(\mu_1(x_1), \ldots, \mu_n(x_n), t(f(x_1, \ldots, x_n) = y)),$$

where $t(true) = 1$ and $t(false) = 0$.

9. Fuzzy Case: Reduction to Interval Computations

- **Given**: an algorithm \(y = f(x_1, \ldots, x_n) \) and \(n \) fuzzy numbers \(X_i \) described by membership functions \(\mu_i(x_i) \).
- **Compute**: \(Y = f(X_1, \ldots, X_n) \), where \(Y \) is defined by Zadeh’s extension principle:
 \[
 \mu(y) = \max_{x_1, \ldots, x_n : f(x_1, \ldots, x_n) = y} \min(\mu_1(x_1), \ldots, \mu_n(x_n)).
 \]
- **Idea**: represent each \(X_i \) by its \(\alpha \)-cuts
 \[
 X_i(\alpha) = \{x_i : \mu_i(x_i) \geq \alpha\}.
 \]
- **Advantage**: for continuous \(f \), for every \(\alpha \), we have
 \[
 Y(\alpha) = f(X_1(\alpha), \ldots, X_n(\alpha)).
 \]
- **Resulting algorithm**: for \(\alpha = 0, 0.1, 0.2, \ldots, 1 \) apply interval computations techniques to compute \(Y(\alpha) \).
10. Open Problems

• In engineering applications, we want methods for estimating uncertainty which are:

 – accurate – this is most important in most engineering applications;

 – fast: this is important in some engineering applications where we need real-time computations,

 – understandable to engineers – otherwise, engineers will be reluctant to use them, and

 – sufficiently general – so that they can be applied in all kinds of situations.

• It is thus desirable to design more accurate, faster, more understandable, and/or more general methods.
11. What We Do in This Thesis

• First, we show how to make the current methods more accurate.
• Then, we show how to make these methods faster.
• After that, we show how to make these methods more understandable to engineers.
• Finally, we analyze how to make these methods more general.
• We also describe remaining open problems and our plan for future work.
Part II

How to Get More Accurate Estimates – by Properly Taking Model Inaccuracy into Account
12. Linearization-Based Algorithm: Reminder

- We know: an algorithm \(f(x_1, \ldots, x_n) \) and values \(\tilde{y}_i \) and \(\Delta_i \).
- We need to find: the range of values \(f(x_1, \ldots, x_n) \) when \(x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i] \).
- Algorithm:

 1) first, we compute \(\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \);
 2) then, for each \(i \) from 1 to \(n \), we compute \(y_i = f(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i + \Delta_i, \tilde{x}_{i+1}, \ldots, \tilde{x}_n) \);

 3) after that, we compute \(\overline{y} = \tilde{y} + \sum_{i=1}^{n} |y_i - \tilde{y}| \) and

 \[\underline{y} = \tilde{y} - \sum_{i=1}^{n} |y_i - \tilde{y}|. \]
13. Taking Model Inaccuracy into Account

- We rarely know the exact dependence $y = f(x_1, \ldots, x_n)$.
- We have an approx. model $F(x_1, \ldots, x_n)$ w/known accuracy ε: $|F(x_1, \ldots, x_n) - f(x_1, \ldots, x_n)| \leq \varepsilon$.
- We know: an algorithm $F(x_1, \ldots, x_n)$, accuracy ε, values \tilde{x}_i and Δ_i.
- Find: the range $\{f(x_1, \ldots, x_n) : x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]\}$.
- If we use the approximate model in our estimate, we get
 $\bar{Y} = \tilde{Y} + \sum_{i=1}^{n} |Y_i - \tilde{Y}|$.
- Here, $|\tilde{Y} - \tilde{y}| \leq \varepsilon$ and $|Y_i - y_i| \leq \varepsilon$, so $|\bar{y} - \bar{Y}| \leq (2n + 1) \cdot \varepsilon$.
- Thus, we arrive at the following algorithm.
14. Resulting Algorithm

- **We know:** an algorithm $F(x_1, \ldots, x_n)$, accuracy ε, values \tilde{x}_i and Δ_i.
- **Find:** the range $\{f(x_1, \ldots, x_n) : x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]\}$.
- **Algorithm:**
 1) compute $\tilde{Y} = Y(\tilde{x}_1, \ldots, \tilde{x}_n)$ and
 $$Y_i = F(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i + \Delta_i, \tilde{x}_{i+1}, \ldots, \tilde{x}_n).$$
 2) compute $\bar{B} = \tilde{Y} + \sum_{i=1}^{n} |Y_i - \tilde{Y}| + (2n + 1) \cdot \varepsilon$ and
 $$\overline{B} = \tilde{Y} - \sum_{i=1}^{n} |Y_i - \tilde{Y}| - (2n + 1) \cdot \varepsilon.$$
- **Problem:** when n is large, then, even for reasonably small inaccuracy ε, the value $(2n + 1) \cdot \varepsilon$ is large.
- **What we do:** we show how we can get better estimates for \overline{y}.
15. How to Get Better Estimates: Idea

- One possible source of model inaccuracy is discretization (e.g., FEM).
- When we select a different combination of parameters, we get an unrelated value of inaccuracy.
- So, let’s consider approx. errors \(\Delta y \overset{\text{def}}{=} F(x_1, \ldots, x_n) - f(x_1, \ldots, x_n) \) as independent random variables.
- What is a probability distribution for these random variables? We know that \(\Delta y \in [-\epsilon, \epsilon] \).
- We do not have any reason to assume that some values from this interval are more probable than others.
- So, it is reasonable to assume that all the values are equally probable: a uniform distribution.
- For this uniform distribution, the mean is 0, and the standard deviation is \(\sigma = \frac{\epsilon}{\sqrt{3}} \).
16. How to Get a Better Estimate for \tilde{y}

- In our main algorithm, we apply the computational model F to $n + 1$ different tuples.
- Let’s also compute $M \overset{\text{def}}{=} F(\tilde{x}_1 - \Delta_1, \ldots, \tilde{x}_n - \Delta_n)$.
- In linearized case, $\tilde{y} + \sum_{i=1}^{n} y_i + m = (n + 2) \cdot \tilde{y}$, so $\tilde{y} = \frac{1}{n + 2} \cdot \left(\tilde{y} + \sum_{i=1}^{n} y_i + m \right)$, and we can estimate \tilde{y} as

$$\tilde{Y}_{\text{new}} = \frac{1}{n + 2} \cdot \left(\tilde{Y} + \sum_{i=1}^{n} Y_i + m \right).$$

- Here, $\Delta\tilde{y}_{\text{new}} = \frac{1}{n + 2} \cdot \left(\Delta\tilde{y} + \sum_{i=1}^{n} \Delta y_i + \Delta m \right)$, so its variance is $\sigma^2 \left[\tilde{Y}_{\text{new}} \right] = \frac{\varepsilon^2}{3 \cdot (n + 2)} \ll \frac{\varepsilon^2}{3} = \sigma^2 \left[\tilde{Y} \right]$.
17. Let Us Use \tilde{Y}_{new} When Estimating \bar{y}

- Let us compute $\overline{Y}_{\text{new}} = \tilde{Y}_{\text{new}} + \sum_{i=1}^{n} |Y_i - \tilde{Y}_{\text{new}}|$.

- Here, when $s_i \in \{-1, 1\}$ are the signs of $y_i - \tilde{y}$, we get:
 \[
 \bar{y} = \tilde{y} + \sum_{i=1}^{n} s_i \cdot (y_i - \tilde{y}) = \left(1 - \sum_{i=1}^{n} s_i\right) \cdot \tilde{y} + \sum_{i=1}^{n} s_i \cdot y_i.
 \]

- Thus, $\Delta \bar{y}_{\text{new}} = \left(1 - \sum_{i=1}^{n} s_i\right) \cdot \Delta \tilde{y}_{\text{new}} + \sum_{i=1}^{n} s_i \cdot \Delta y_i$, so
 \[
 \sigma^2 = \left(1 - \sum_{i=1}^{n} s_i\right)^2 \cdot \frac{\varepsilon^2}{3 \cdot (n + 2)} + \sum_{i=1}^{n} \frac{\varepsilon^2}{3}.
 \]

- Here, $|s_i| \leq 1$, so $\left|1 - \sum_{i=1}^{n} s_i\right| \leq n + 1$, and
 \[
 \sigma^2 \leq \frac{\varepsilon^2}{3} \cdot (2n + 1).
 \]
18. Using \tilde{Y}_{new} (cont-d)

- We have $\Delta \tilde{y}_{\text{new}} = \left(1 - \sum_{i=1}^{n} s_i\right) \cdot \Delta \tilde{y}_{\text{new}} + \sum_{i=1}^{n} s_i \cdot \Delta y_i$.
- Due to the Central Limit Theorem, $\Delta \tilde{y}_{\text{new}}$ is \approx normal.
- We know that $\sigma^2 \leq \frac{\varepsilon^2}{3} \cdot (2n + 1)$.
- Thus, with certainty depending on k_0, we have
 $$\bar{y} \leq Y_{\text{new}} + k_0 \cdot \sigma \leq Y_{\text{new}} + k_0 \cdot \frac{\varepsilon}{\sqrt{3}} \cdot \sqrt{2n + 1} :$$
 - with certainty 95% for $k_0 = 2$,
 - with certainty 99.9% for $k_0 = 3$, etc.
- Here, inaccuracy grows as $\sqrt{2n + 1}$.
- This is much better than in the traditional approach, where it grows $\sim 2n + 1$.
19. Resulting Algorithm

- **We know:** \(F(x_1, \ldots, x_n), \varepsilon, \tilde{x}_i \) and \(\Delta_i \).
- **We want:** to find the range of \(f(x_1, \ldots, x_n) \) when \(x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i] \).
- **Algorithm:**

 1) compute \(\tilde{Y} = F(\tilde{x}_1, \ldots, \tilde{x}_n) \),

 \[
 M = F(\tilde{x}_1 - \Delta_1, \ldots, \tilde{x}_n - \Delta_n), \quad \text{and}
 \]

 \[
 Y_i = F(\tilde{x}_1, \ldots, \tilde{x}_{i-1}, \tilde{x}_i + \Delta_i, \tilde{x}_{i+1}, \ldots, \tilde{x}_n);
 \]

 2) compute \(\tilde{Y}_{\text{new}} = \frac{1}{n+2} \left(\tilde{Y} + \sum_{i=1}^{n} Y_i + M \right) \),

 \[
 \bar{b} = \tilde{Y}_{\text{new}} + \sum_{i=1}^{n} \left| Y_i - \tilde{Y}_{\text{new}} \right| + k_0 \cdot \sqrt{2n + 1} \cdot \frac{\varepsilon}{\sqrt{3}};
 \]

 \[
 \underline{b} = \tilde{Y}_{\text{new}} - \sum_{i=1}^{n} \left| Y_i - \tilde{Y}_{\text{new}} \right| - k_0 \cdot \sqrt{2n + 1} \cdot \frac{\varepsilon}{\sqrt{3}}.
 \]
20. A Similar Improvement Is Possible for the Cauchy Method

- In the Cauchy method, we compute \(\tilde{Y} \) and the values
 \[
 Y^{(k)} = F(\tilde{x}_1 + \eta_1^{(k)}, \ldots, \tilde{x}_n + \eta_n^{(k)}).
 \]

- We can then compute the improved estimate for \(\tilde{y} \), as:
 \[
 \tilde{Y}_{\text{new}} = \frac{1}{N+1} \cdot \left(\tilde{Y} + \sum_{k=1}^{N} Y^{(k)} \right).
 \]

- We can now use this improved estimate when estimating the differences \(\Delta y^{(k)} \): namely, we compute
 \[
 Y^{(k)} - \tilde{Y}_{\text{new}}.
 \]

• *Problem*: reconstruct the velocity of sound v_i at different spatial locations and at different depths.

• *What we know*: the travel-times t_j of a seismic signal from the set-up explosion to seismic stations.

• *Hole’s iterative algorithm*:

 – we start with geology-motivated values $v_i^{(1)}$;

 – based on the current approximation $v_i^{(k)}$, we estimate the travel times $t_j^{(k)}$;

 – update v_i: \[
 \frac{1}{v_i^{(k+1)}} = \frac{1}{v_i^{(k)}} + \frac{1}{n_i} \sum_j \frac{t_j - t_j^{(k)}}{L_j}.
 \]

• Using \tilde{Y}_{new} decreased the inaccuracy σ, on average, by 15%; σ increased only in one case (only by 7%).
22. Case Study: Seismic Inverse Problem in the Geosciences
23. Can We Further Improve the Accuracy?

- The inaccuracy $Y \neq y$ is caused by using elements of finite size h.
- This inaccuracy is proportional to h.
- If we decrease h to h', we thus need $K \overset{\text{def}}{=} \frac{h^3}{(h')^3}$ more cells, so we need K times more computations.
- Thus, the accuracy decreases as $\sqrt[3]{K}$.
- New idea: select K small vectors $(\Delta_1^{(k)}, \ldots, \Delta_n^{(k)})$ which add up to 0, and estimate \tilde{y} as
 \[Y_K(x_1, \ldots, x_n) = \frac{1}{K} \cdot \sum_{k=1}^{K} F\left(x_1 + \Delta_1^{(k)}, \ldots, x_n + \Delta_n^{(k)}\right). \]
- Averaging K independent random errors decreases the inaccuracy by a factor of \sqrt{K}, much faster than $\sqrt[3]{K}$.
Part III
How to Speed Up Computations – by Processing Different Types of Uncertainty Separately
24. Cases for Which a Speed-Up Is Possible

- Sometimes, all membership functions are “of the same type”: \(\mu(z) = \mu_0(k \cdot z) \) for some symmetric \(\mu_0(z) \).

- Example: for triangular functions,
 \[
 \mu_0(z) = \max(1 - |z|, 0).
 \]

- In this case, \(\mu(z) \geq \alpha \) is equivalent to \(\mu_0(k \cdot z) \geq \alpha \), so \(\alpha \Delta_0 = k \cdot \alpha \Delta \) and \(0 \Delta_0 = k \cdot 0 \Delta \).

- Thus, \(\alpha \Delta = f(\alpha) \cdot 0 \Delta \), where \(f(\alpha) = \frac{\alpha \Delta_0}{0 \Delta_0} \).

- For example, for a triangular membership function, we have \(f(\alpha) = 1 - \alpha \).

- So, if we know the type \(\mu_0 \) (hence \(f(\alpha) \)), and we know the 0-cut, we can compute all \(\alpha \)-cuts as \(\alpha \Delta = f(\alpha) \cdot 0 \Delta \).

- So, if \(\mu_i(\Delta x_i) \) are of the same type, then for all \(\alpha \), we have \(\alpha \Delta_i = f(\alpha) \cdot 0 \Delta_i \).
25. When a Speed-Up Is Possible (cont-d)

- We know that $\alpha \Delta = \sum_{i=1}^{n} |c_i| \cdot \alpha \Delta_i$.

- For $\alpha \Delta_i = f(\alpha) \cdot 0 \Delta_i$, we get

 $$\alpha \Delta = \sum_{i=1}^{n} |c_i| \cdot f(\alpha) \cdot 0 \Delta_i.$$

- So, $\alpha \Delta = f(\alpha) \cdot \sum_{i=1}^{n} |c_i| \cdot 0 \Delta_i = f(\alpha) \cdot 0 \Delta$.

- Thus, if all $\mu(x)$ are of the same type $\mu_0(z)$, there is no need to compute $\alpha \Delta$ eleven times:
 - it is sufficient to compute 0Δ;
 - to find all other values $\alpha \Delta$, we simply multiply 0Δ by the factors $f(\alpha)$ corresponding to $\mu_0(z)$.
26. A More General Case

- A more general case is:
 - when we have a list of T different types of uncertainty – i.e., types of membership functions, and
 - each approximation error Δx_i consists of $\leq T$ components of the corresponding type t:

$$\Delta x_i = \sum_{t=1}^{T} \Delta x_{i,t}.$$

- For example:
 - type $t = 1$ may correspond to intervals (which are, of course, a particular case of fuzzy uncertainty),
 - type $t = 2$ may correspond to triangular membership functions, etc.
27. How This Case Is Processed Now

- **First stage:**
 - we use the known membership functions $\mu_{i,t}(\Delta x_{i,t})$
 - to find the memberships functions $\mu_{i}(\Delta x_{i})$ that correspond to the sum Δx_{i}.

- **Second stage:** we use $\mu_{i}(\Delta x_{i})$ to compute the desired membership function $\mu(\Delta y)$.

- **Problem:** on the second stage, we apply the above formula eleven times:

$$\alpha \Delta = \sum_{i=1}^{n} |c_{i}| \cdot \alpha \Delta_{i}.$$
28. Main Idea

- We have \(\Delta y = \sum_{i=1}^{n} c_i \cdot \Delta x_i \), where

\[
\Delta x_i = \sum_{t=1}^{T} \Delta x_{i,t}.
\]

- Thus, \(\Delta y = \sum_{i=1}^{n} c_i \cdot \left(\sum_{t=1}^{T} \Delta x_{i,t} \right) \).

- Grouping together all the terms corr. to type \(t \), we get

\[
\Delta y = \sum_{t=1}^{T} \Delta y_t, \text{ where } \Delta y_t \overset{\text{def}}{=} \sum_{i=1}^{n} c_i \cdot \Delta x_{i,t}.
\]

- For each \(t \), we are combining membership functions of the same type, so it is enough to compute \(^0 \Delta_t \).

- Then, we add the resulting membership functions – by adding the corresponding \(\alpha \)-cuts.
29. Resulting Algorithm

- Let \([-\Delta_{i,t}, \Delta_{i,t}]\) be 0-cuts of the membership functions \(\mu_{i,t}(\Delta x_{i,t})\).

- Based on these 0-cuts, we compute, for each type \(t\), the values \(\Delta_t = \sum_{i=1}^{n} |c_i| \cdot \Delta_{i,t}\).

- Then, for \(\alpha = 0, 0.1, \ldots\), and for \(\alpha = 1.0\), we compute the values \(\alpha \Delta_t = f_t(\alpha) \cdot \Delta_t\).

- Finally, we add up \(\alpha\)-cuts corresponding to different types \(t\), to come up with the expression \(\Delta = \sum_{t=1}^{T} \alpha \Delta_t\).

- Comment. We can combine the last two steps into a single step: \(\Delta = \sum_{t=1}^{T} f_t(\alpha) \cdot \Delta_t\).
30. The New Algorithm Is Much Faster

- The original algorithm computed the above formula eleven times:
 \[\alpha \Delta = \sum_{i=1}^{n} |c_i| \cdot \alpha \Delta_i. \]

- The new algorithm uses the corresponding formula \(T \) times, i.e., as many times as there are types.

- All the other computations are much faster, since they do not grow with the input size \(n \).

- Thus, if the number \(T \) of different types is smaller than eleven, the new methods is much faster.

- Example: for \(T = 2 \) types (e.g., intervals and triangular \(\mu(x) \)), we get a \(\frac{11}{2} = 5.5 \) times speedup.
31. Conclusions and Future Work

- We can therefore conclude that sometimes, it is beneficial to process different types of uncertainty separately.
- Namely, it is beneficial when we have ten or fewer different types of uncertainty.
- The fewer types of uncertainty we have, the faster the resulting algorithm.
- We plan to test this idea of several actual data processing examples.
- We also plan to extend this idea to other types of uncertainty, in particular, to probabilistic uncertainty.
Part IV
Towards a Better Understandability of Uncertainty-Estimating Algorithms: Explaining the Need for Non-Realistic Monte-Carlo Simulations
32. Formulation of the Problem: Reminder

- **Good news:** Cauchy-based Monte-Carlo method is an efficient way of estimating interval uncertainty.
- **Limitation:** this method is not realistic; indeed:
 - we know that \(\Delta x_i \) is inside \([-\Delta_i, \Delta_i] \), but
 - Cauchy-distributed variable has a high probability to be outside this interval.
- **Natural question:** is it a limitation of our method, or of a problem itself?
- **Our answer:** for interval uncertainty, a realistic Monte-Carlo method is not possible.
33. Proof: Case of Independent Variables

- It is sufficient to prove that we cannot get the correct estimate for one specific function
 \[f(x_1, \ldots, x_n) = x_1 + \ldots + x_n, \text{ when } \Delta y = \Delta x_1 + \ldots + \Delta x_n. \]

- When each variables \(\Delta x_i \) is in the interval \([-\delta, \delta]\), then the range of \(\Delta y \) is \([-\Delta, \Delta]\), where \(\Delta = n \cdot \delta \).

- In Monte-Carlo, \(\Delta y^{(k)} = \Delta x_1^{(k)} + \ldots + \Delta x_n^{(k)} \).

- \(\Delta x_i^{(k)} \) are i.i.d.

- Due to the Central Limit Theorem, when \(n \to \infty \), the distribution of the sum tends to Gaussian.

- For a normal distribution, with very high confidence, \(\Delta y \in [\mu - k \cdot \sigma, \mu + k \cdot \sigma] \).

- Here, \(\sigma \sim \sqrt{n} \), so this interval has width \(w \sim \sqrt{n} \).

- However, the actual range of \(\Delta y \) is \(\sim n \gg w \). Q.E.D.
34. General Case

- Let’s take \(f(x_1, \ldots, x_n) = s_1 \cdot x_1 + \ldots + s_n \cdot x_n \), where \(s_i \in \{-1, 1\} \).

- Then, \(\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i = n \cdot \delta \).

- Let \(\varepsilon > 0, \delta > 0, \) and \(p \in (0, 1) \). We consider probability distributions \(P \) on the set of all vectors \((\Delta x_1 \ldots, \Delta x_n) \in [-\delta, \delta] \times \ldots \times [-\delta, \delta] \).

- We say that \(P \) is a \((p, \varepsilon) \)-realistic Monte-Carlo estimation (MCE) if for all \(s_i \in \{-1, 1\} \), we have
 \[
 \text{Prob}(s_1 \cdot \Delta x_1 + \ldots + s_n \cdot \Delta x_n \geq n \cdot \delta \cdot (1 - \varepsilon)) \geq p.
 \]

- **Result.** If for every \(n \), we have a \((p_n, \varepsilon) \)-realistic MCE, then \(p_n \leq \beta \cdot n \cdot c^n \) for some \(\beta > 0 \) and \(c < 1 \).

- For probability \(p_n \), we need \(1/p_n \sim c^{-n} \) simulations – more than \(n + 1 \) for numerical differentiation.
35. Why Cauchy Distribution: Formulation of the Problem

- We want to find a family of probability distributions with the following property:
 - when independent X_1, \ldots, X_n have distributions from this family with parameters $\Delta_1, \ldots, \Delta_n$,
 - then each $Y = c_1 \cdot X_1 + \ldots + c_n \cdot X_n \sim \Delta \cdot X$, where X corr. to parameter 1, and $\Delta = \sum_{i=1}^{n} |c_i| \cdot \Delta_i$.

- In particular, for $\Delta_1 = \ldots = \Delta_n = 1$, the desired property of this probability distribution is as follows:
 - if we have n independent identically distributed random variables X_1, \ldots, X_n,
 - then each $Y = c_1 \cdot X_1 + \ldots + c_n \cdot X_n$ has the same distribution as $\Delta \cdot X_i$, where $\Delta = \sum_{i=1}^{n} |c_i|$.
36. Analysis of the Problem

- For $n = 1$ and $c_1 = -1$, the desired property says that $-X \sim X$, the distribution is even.
- A usual way to describe a probability distribution is to use a probability density function $\rho(x)$.
- Often, it is convenient to use its Fourier transform – the characteristic function $\chi_X(\omega) \overset{\text{def}}{=} E[\exp(i \cdot \omega \cdot X)]$.
- When X_i are independent, then for $S = X_1 + X_2$:
\[
\chi_S(\omega) = E[\exp(i \cdot \omega \cdot S)] = E[\exp(i \cdot \omega \cdot (X_1 + X_2))] = \\
E[\exp(i \cdot \omega \cdot X_1 + i \cdot \omega \cdot X_2)] = \\
E[\exp(i \cdot \omega \cdot X_1) \cdot \exp(i \cdot \omega \cdot X_2)].
\]
- Since X_1 and X_2 are independent,
\[
\chi_S(\omega) = E[\exp(i \cdot \omega \cdot X_1)] \cdot E[\exp(i \cdot \omega \cdot X_2)] = \chi_{X_1}(\omega) \cdot \chi_{X_2}(\omega).
\]
37. Analysis of the Problem (cont-d)

- Similarly, for \(Y = \sum_{i=1}^{n} c_i \cdot X_i \), we have

\[
\chi_Y(\omega) = E[\exp(i \cdot \omega \cdot Y)] = E \left[\exp \left(i \cdot \omega \cdot \sum_{i=1}^{n} c_i \cdot X_i \right) \right] = \\
E \left[\prod_{i=1}^{n} \exp(i \cdot \omega \cdot c_i \cdot X_i) \right] = \prod_{i=1}^{n} \chi_X(\omega \cdot c_i).
\]

- The desired property is \(Y \sim \Delta \cdot X \), so

\[
\prod_{i=1}^{n} \chi_X(\omega \cdot c_i) = \chi_{\Delta \cdot X}(\omega) = E[\exp(i \cdot \omega \cdot (\Delta \cdot X))] \chi_X(\omega \cdot \Delta),
\]

so \(\chi_X(c_1 \cdot \omega) \cdot \ldots \cdot \chi_X(c_n \cdot \omega) = \chi_X((|c_1| + \ldots + |c_n|) \cdot \omega) \).

- In particular, for \(n = 1, c_1 = -1 \), we get \(\chi_X(-\omega) = \chi_X(\omega) \), so \(\chi_X(\omega) \) should be an even function.
38. Analysis of the Problem (cont-d)

• Reminder:

\[\chi_X(c_1 \cdot \omega) \cdot \ldots \cdot \chi_X(c_n \cdot \omega) = \chi_X(|c_1| + \ldots + |c_n|) \cdot \omega). \]

• For \(n = 2, c_1 > 0, c_2 > 0, \) and \(\omega = 1, \) we get

\[\chi_X(c_1 + c_2) = \chi_X(c_1) \cdot \chi_X(c_2). \]

• The characteristic function should be measurable.

• Known: the only measurable functions with this property are \(\chi_X(\omega) = \exp(-k \cdot \omega) \) for some \(k. \)

• Due to evenness, for a general \(\omega, \) we get \(\chi_X(\omega) = \exp(-k \cdot |\omega|). \)

• By applying the inverse Fourier transform, we conclude that \(X \) is Cauchy distributed.

• Conclusion: so, only Cauchy distribution works.
Part V
How General Can We Go: What Is Computable and What Is Not
39. Need to Take Uncertainty Into Account When Processing Data: Reminder

- In practice, we are often interested in a quantity y which is difficult to measure directly.

- *Examples*: distance to a star, amount of oil in the well, tomorrow’s weather.

- *Solution*: find easier-to-measure quantities x_1, \ldots, x_n related to y by a known dependence $y = f(x_1, \ldots, x_n)$.

- Then, we measure x_i and use measurement results \tilde{x}_i to compute an estimate $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$.

- Measurements are never absolutely accurate, so even if the model f is exact, $\tilde{x}_i \neq x_i$ leads to $\Delta y \overset{\text{def}}{=} \tilde{y} - y \neq 0$.

- It is important to use information about measurement errors $\Delta x_i \overset{\text{def}}{=} \tilde{x}_i - x_i$ to estimate the accuracy Δy.
40. We Often Have Imprecise Probabilities

- *Usual assumption:* we know the probabilities for Δx_i.
- To find them, we measure the same quantities:
 - with our measuring instrument (MI) and
 - with a much more accurate MI, with $\tilde{x}_i^{st} \approx x_i$.
- In two important cases, this does not work:
 - state-of-the-art measurements, and
 - measurements on the shop floor.
- Then, we have partial information about probabilities.
- Often, all we know is an upper bound $|\Delta x_i| \leq \Delta_i$.
- Then, we only know that $x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$ and
 $y \in [\underline{y}, \overline{y}] \overset{\text{def}}{=} \{ f(x_1, \ldots, x_n) : x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i] \}$.
- Computing $[\underline{y}, \overline{y}]$ is known as *interval computation.*
41. How Do We Describe Imprecise Probabilities?

- **Ultimate goal of most estimates:** to make decisions.

- **Known:** a rational decision-maker maximizes expected utility $E[u(y)]$.

- For smooth $u(y)$, $y \approx \tilde{y}$ implies that

$$u(y) = u(\tilde{x}) + (y - \tilde{y}) \cdot u'(\tilde{y}) + \frac{1}{2} \cdot (y - \tilde{y})^2 \cdot u''(\tilde{y}).$$

- So, to find $E[u(y)]$, we must know moments $E[(y-\tilde{y})^k]$.

- Often, $u(x)$ abruptly changes: e.g., when pollution level exceeds y_0; then $E[u(y)] \sim F(y) \overset{\text{def}}{=} \text{Prob}(y \leq y_0)$.

- From $F(y)$, we can estimate moments, so $F(x)$ is enough.

- Imprecise probabilities mean that we know $F(y)$, we only know bounds (p-box) $\underline{F}(y) \leq F(y) \leq \overline{F}(y)$.
42. What Is Computable?

- Computations with p-boxes are practically important.
- It is thus desirable to come up with efficient algorithms which are as general as possible.
- It is known that too general problems are often *not* computable.
- To avoid wasting time, it is therefore important to find out what *can* be computed.
- At first glance, this question sounds straightforward:
 - to describe a cdf, we can consider a computable function $F(x)$;
 - to describe a p-box, we consider a computable *function interval* $[\underline{F}(x), \overline{F}(x)]$.
- Often, we can do that, but we will show that sometimes, we need to go *beyond* function intervals.
43. Reminder: What Is Computable?

- A real number \(x \) corresponds to a value of a physical quantity.
- We can measure \(x \) with higher and higher accuracy.
- So, \(x \) is called *computable* if there is an algorithm, that, given \(k \), produces a rational \(r_k \) s.t. \(|x - r_k| \leq 2^{-k}\).
- A *computable function* computes \(f(x) \) from \(x \).
- We can only use approximations to \(x \).
- So, an algorithm for computing a function can, given \(k \), request a \(2^{-k} \)-approximation to \(x \).
- Most usual functions are thus computable.
- *Exception:* step-function \(f(x) = 0 \) for \(x < 0 \) and \(f(x) = 1 \) for \(x \geq 0 \).
- Indeed, no matter how accurately we know \(x \approx 0 \), from \(r_k = 0 \), we cannot tell whether \(x < 0 \) or \(x \geq 0 \).
44. Consequences for Representing a cdf $F(x)$

- We would like to represent a general probability distribution by its cdf $F(x)$.
- From the purely mathematical viewpoint, this is indeed the most general representation.
- At first glance, it makes sense to consider computable functions $F(x)$.
- For many distributions, e.g., for Gaussian, $F(x)$ is computable.
- However, when $x = 0$ with probability 1, the cdf $F(x)$ is exactly the step-function.
- And we already know that the step-function is not computable.
- Thus, we need to find an alternative way to represent cdf’s – beyond computable functions.
45. Back to the Drawing Board

- Each value $F(x)$ is the probability that $X \leq x$.
- We cannot empirically find exact probabilities p.
- We can only estimate frequencies f based on a sample of size N.
- For large N, the difference $d \overset{\text{def}}{=} p - f$ is asymptotically normal, with $\mu = 0$ and $\sigma = \sqrt{\frac{p \cdot (1 - p)}{N}}$.
- Situations when $|d - \mu| < 6\sigma$ are negligibly rare, so we conclude that $|f - p| \leq 6\sigma$.
- For large N, we can get $6\sigma \leq \delta$ for any accuracy $\delta > 0$.
- We get a sample X_1, \ldots, X_N.
- We don’t know the exact values X_i, only measured values \tilde{X}_i s.t. $|\tilde{X}_i - X_i| \leq \varepsilon$ for some accuracy ε.
- So, what we have is a frequency $f = \text{Freq}(\tilde{X}_i \leq x)$.
46. Resulting Definition

- Here, $X_i \leq x - \varepsilon \Rightarrow \tilde{X}_i \leq x \Rightarrow X_i \leq x + \varepsilon$, so

$\text{Freq}(X_i \leq x - \varepsilon) \leq f = \text{Freq}(\tilde{X}_i \leq x) \leq \text{Freq}(X_i \leq x + \varepsilon)$.

- Frequencies are δ-close to probabilities, so we arrive at the following:

- For every $x, \varepsilon > 0$, and $\delta > 0$, we get a rational number f such that $F(x - \varepsilon) - \delta \leq f \leq F(x + \varepsilon) + \delta$.

- This is how we define a computable cdf $F(x)$.

- In the computer, to describe a distribution on an interval $[T, \overline{T}]$:

 - we select a grid $x_1 = T, x_2 = T + \varepsilon, \ldots$, and
 - we store the corr. frequencies f_i with accuracy δ.

- A class of possible distribution is represented, for each ε and δ, by a finite list of such approximations.
47. First Equivalent Definition

- **Original**: \(\forall x \forall \varepsilon > 0 \forall \delta > 0\), we get a rational \(f\) such that
 \[
 F(x - \varepsilon) - \delta \leq f \leq F(x + \varepsilon) + \delta.
 \]

- **Equivalent**: \(\forall x \forall \varepsilon > 0 \forall \delta > 0\), we get a rational \(f\) which is \(\delta\)-close to \(F(x')\) for some \(x'\) such that \(|x' - x| \leq \varepsilon\).

- **Proof of equivalence:**
 - We know that \(F(x + \varepsilon) - F(x + \varepsilon/3) \to 0\) as \(\varepsilon \to 0\).
 - So, for \(\varepsilon = 2^{-k}\), \(k = 1, 2, \ldots\), we take \(f\) and \(f'\) s.t.
 \[
 F(x + \varepsilon/3) - \delta/4 \leq f \leq F(x + (2/3) \cdot \varepsilon) + \delta/4
 \]
 \[
 F(x + (2/3) \cdot \varepsilon) - \delta/4 \leq f' \leq F(x + \varepsilon) + \delta/4.
 \]
 - We stop when \(f\) and \(f'\) are sufficiently close:
 \[
 |f - f'| \leq \delta.
 \]
 - Thus, we get the desired \(f\).
48. Second Equivalent Definition

- We start with pairs \((x_1, f_1), (x_2, f_2), \ldots\)
- When \(f_{i+1} - f_i > \delta\), we add intermediate pairs
 \((x_i, f_i + \delta), (x_i, f_i + 2\delta), \ldots, (x_i, f_{i+1})\).
- The resulting set of pairs is \((\varepsilon, \delta)\)-close to the graph
 \(\{(x, y) : F(x - 0) \leq y \leq F(x)\}\) in Hausdorff metric \(d_H\).
- \((x, y)\) and \((x', y')\) are \((\varepsilon, \delta)\)-close if \(|x - x'| \leq \varepsilon\) and \(|y - y'| \leq \delta\).
- The sets \(S\) and \(S'\) are \((\varepsilon, \delta)\)-close if:
 - for every \(s \in S\), there is a \((\varepsilon, \delta)\)-close point \(s' \in S'\);
 - for every \(s' \in S'\), there is a \((\varepsilon, \delta)\)-close point \(s \in S\).
- Compacts with metric \(d_H\) form a computable compact.
- So, \(F(x)\) is a monotonic computable object in this compact.
49. What Can Be Computed: A Positive Result for the 1D Case

• **Reminder:** we are interested in $F(x)$ and $E_{F(x)}[u(x)]$ for smooth $u(x)$.

• **Reminder:** estimate for $F(x)$ is part of the definition.

• **Question:** computing $E_{F(x)}[u(x)]$ for smooth $u(x)$.

• **Our result:** there is an algorithm that:

 – given a computable cdf $F(x)$,
 – given a computable function $u(x)$, and
 – given accuracy $\delta > 0$,
 – computes $E_{F(x)}[u(x)]$ with accuracy δ.

• For computable classes \mathcal{F} of cdfs, a similar algorithm computes the range of possible values

\[
[u, \bar{u}] \overset{\text{def}}{=} \{ E_{F(x)}[u(x)] : F(x) \in \mathcal{F} \}.
\]
50. Proof: Main Idea

- Computable functions are computably continuous: for every $\delta > 0$, we can compute $\varepsilon > 0$ s.t.

 $$|x - x'| \leq \varepsilon \implies |f(x) - f(x')| \leq \delta.$$

- We select ε corr. to $\delta/4$, and take a grid with step $\varepsilon/4$.

- For each x_i, the value f_i is $(\delta/4)$-close to $F(x'_i)$ for some x'_i which is $(\varepsilon/4)$-close to x_i.

- The function $u(x)$ is $(\delta/2)$-close to a piece-wise constant function $u'(x) = u(x_i)$ for $x \in [x'_i, x'_{i+1}]$.

- Thus, $|E[u(x)] - E[u'(x)]| \leq \delta/2$.

- Here, $E[u'(x)] = \sum_i u(x_i) \cdot (F(x'_{i+1}) - F(x'_i))$.

- Here, $F(x'_i)$ is close to f_i and $F(x'_{i+1})$ is close to f_{i+1}.

- Thus, $E[u'(x)]$ (and hence, $E[u(x)]$) is computably close to a computable sum $\sum_i u(x_i) \cdot (f_{i+1} - f_i)$.
51. What to Do in a Multi-D Case?

- For each $g(x)$, y, $\varepsilon > 0$, and $\delta > 0$, we can find a frequency f such that:
 $$\left| P(g(x) \leq y') - f \right| \leq \varepsilon \text{ for some } y' \text{ s.t. } |y - y'| \leq \delta.$$

- We select an ε-net x_1, \ldots, x_n for X. Then,
 $$X = \bigcup_{i} B_{\varepsilon}(x_i), \text{ where } B_{\varepsilon}(x) \overset{\text{def}}{=} \{x' : d(x, x') \leq \varepsilon\}.$$

- We select f_1 which is close to $P(B_{\varepsilon'}(x_1))$ for all ε' from some interval $[\varepsilon, \overline{\varepsilon}]$ which is close to ε.

- We then select f_2 which is close to $P(B_{\varepsilon'}(x_1) \cup B_{\varepsilon'}(x_2))$ for all ε' from some subinterval of $[\varepsilon, \overline{\varepsilon}]$, etc.

- Then, we get approximations to probabilities of the sets $B_{\varepsilon}(x_i) - (B_{\varepsilon}(x_1) \cup \ldots \cup B_{\varepsilon}(x_{i-1}))$.

- This lets us compute the desired values $E[u(x)]$.

Part VI

Conclusions and Future Work
52. Conclusions

- In many practical applications, we process measurement results and expert estimates.
- Measurements and expert estimates are never absolutely accurate.
- Their results are slightly different from the actual (unknown) values of the corresponding quantities.
- It is therefore desirable to analyze how measurement inaccuracy affects the results of data processing.
- There exist numerous methods for estimating the accuracy of the results of data processing.
- These methods cover different models of inaccuracy: probabilistic, interval, and fuzzy.
53. Conclusions (cont-d)

- To be useful in engineering applications, the uncertainty methods should satisfy the following objectives.
- They should provide accurate estimate for the resulting uncertainty.
- They should not take too much computation time.
- They should be understandable to engineers.
- They should be sufficiently general to cover all kinds of uncertainty.
54. Conclusions (final)

- In this thesis, on several case studies, we show how we can achieve these four objectives.
- We show that we can get more accurate estimates by properly taking model inaccuracy into account.
- We show that we can speed up computations by processing different types of uncertainty differently.
- We show that we can make uncertainty-estimating algorithms more understandable.
- We also analyze how general uncertainty-estimating algorithms can be.
55. Future Work

- In our future work, we plan to continue working in these four directions.
- In particular, we plan to extend our speed-up algorithms from fuzzy to probabilistic uncertainty.
- One of the main reasons for estimation and data processing is to make decisions; we thus plan to analyze:
 - how the corresponding uncertainty affects decision making, and
 - what is the best way to make decisions under different types of uncertainty.
- We plan to apply these algorithms to practical engineering problems, e.g., pavement compaction.
56. Acknowledgments

I want to express my gratitude to my committee members:

- Vladik Kreinovich, Chair
- Jack Chessa,
- Aaron Velasco, and
- Piotr Wojciechowski.
Part VII
Proofs
57. Proof of the Main Result from Part 4

- Let us pick some $\alpha \in (0, 1)$.
- Let us denote, by m, the number of indices i or which $s_i \cdot \Delta x_i > \alpha \cdot \delta$.
- If we have $s_1 \cdot \Delta x_1 + \ldots + s_n \cdot \Delta x_n \geq n \cdot \delta \cdot (1 - \varepsilon)$, then:
 - for $n - m$ indices, we have $s_i \cdot \Delta x_i \leq \alpha \cdot \delta$ and
 - for the other m indices, we have $s_i \cdot \Delta x_i \leq \delta$.
- Thus, $n \cdot \delta \cdot (1 - \varepsilon) \leq \sum_{i=1}^{n} s_i \cdot \Delta x_i \leq m \cdot \delta + (n - m) \cdot \alpha \cdot \delta$.
- Dividing this inequality by δ, we get
 \[n \cdot (1 - \varepsilon) \leq m + (n - m) \cdot \alpha. \]
- So, $n \cdot (1 - \alpha - \varepsilon) \leq m \cdot (1 - \alpha)$ and $m \geq n \cdot \frac{1 - \alpha - \varepsilon}{1 - \alpha}$.
- So, we have at least $n \cdot \frac{1 - \alpha - \varepsilon}{1 - \alpha}$ indices for which Δx_i has the same sign as s_i (and for which $|\Delta x_i| > \alpha \cdot \delta$).
58. Proof from Part 4 (cont-d)

- So, for Δx_i corr. to (s_1, \ldots, s_n), at most $n \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$ indices have a different sign than s_i.

- It is possible that the same tuple Δx can serve two tuples $s \neq s'$. In this case:
 - going from s_i to $\text{sign}(\Delta x_i)$ changes at most $n \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$ signs, and
 - going from $\text{sign}(\Delta x_i)$ to s'_i also changes at most $n \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$ signs.

- Thus, between the tuples s and s', at most $2 \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$ signs are different.

- In other words, for the Hamming distance $d(s, s') \overset{\text{def}}{=} \#\{i : s_i \neq s'_i\}$, we have $d(s, s') \leq 2 \cdot n \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$.
59. Proof from Part 4 (cont-d)

- Thus, if $d(s, s') > 2 \cdot n \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$, then no tuples $(\Delta x_1, \ldots, \Delta x_n)$ can serve both sign tuples s and s'.

- In this case, the two sets of tuples Δx do not intersect:
 - tuples s.t. $s_1 \cdot \Delta x_1 + \ldots + s_n \cdot \Delta x_n \geq n \cdot \delta \cdot (1 - \varepsilon)$;
 - tuples s.t. $s'_1 \cdot \Delta x_1 + \ldots + s'_n \cdot \Delta x_n \geq n \cdot \delta \cdot (1 - \varepsilon)$.

- Let's take M sign tuples $s^{(1)}, \ldots, s^{(M)}$ for which $d(s^{(i)}, s^{(j)}) > 2 \cdot \frac{\varepsilon}{1 - \alpha - \varepsilon}$ for all $i \neq j$.

- Then the probability P that Δx serves one of these sign tuples is $\geq M \cdot p$.

- Since $P \leq 1$, we have $p \leq \frac{1}{M}$; so:
 - to prove that p_n is exponentially decreasing,
 - it is sufficient to find the sign tuples whose number M is exponentially increasing.
60. Proof from Part 4 (cont-d)

• Let us denote $\beta \overset{\text{def}}{=} \frac{\varepsilon}{1 - \alpha - \varepsilon}$.

• Then, for each sign tuple s, the number t of all sign tuples s' for which $d(s, s') \leq \beta \cdot n$ is equal to the sum of:

 – the number of tuples $\binom{n}{0}$ that differ from s in 0 places,

 – the number of tuples $\binom{n}{1}$ that differ from s in 1 place, \ldots,

 – the number of tuples $\binom{n}{\beta \cdot n}$ that differ from s in $\beta \cdot n$ places,

• Thus, $t = \binom{n}{0} + \binom{n}{1} + \ldots + \binom{n}{n \cdot \beta}$.
61. Proof from Part 4 (cont-d)

• When $\beta < 0.5$ and $\beta \cdot n < \frac{n}{2}$, the number of combinations $\binom{n}{k}$ increases with k, so $t \leq \beta \cdot n \cdot \binom{n}{\beta \cdot n}$.

• Here, $\binom{a}{b} = \frac{a!}{b! \cdot (a-b)!}$. Since $n! \sim \left(\frac{n}{e}\right)^n$, we have

$$t \leq \beta \cdot n \cdot \left(\frac{1}{\beta^\beta \cdot (1 - \beta)^{1-\beta}}\right)^n.$$

• Here, $\gamma \overset{\text{def}}{=} \frac{1}{\beta^\beta \cdot (1 - \beta)^{1-\beta}} = \exp(S)$, where $S \overset{\text{def}}{=} -\beta \cdot \ln(\beta) - (1 - \beta) \cdot \ln(1 - \beta)$ is Shannon’s entropy.

• It is known that S attains its largest value when $\beta = 0.5$, in which case $S = \ln(2)$ and $\gamma = \exp(S) = 2$.

• When $\beta < 0.5$, we have $S < \ln(2)$, thus, $\gamma < 2$, and

$$t \leq \beta \cdot n \cdot \gamma^n$$

for some $\gamma < 2$.
62. Proof from Part 4 (cont-d)

- Let us now construct the desired collection of sign tuples \(s^{(1)}, \ldots, s^{(M)} \).
 - We start with some sign tuple \(s^{(1)} \), e.g., \(s^{(1)} = (1, \ldots, 1) \).
 - Then, we dismiss \(t \leq \gamma^n \) tuples which are \(\leq \beta \)-close to \(s \), and select one of the remaining tuples as \(s^{(2)} \).
 - We then dismiss \(t \leq \gamma^n \) tuples which are \(\leq \beta \)-close to \(s^{(2)} \).
 - Among the remaining tuples, we select the tuple \(s^{(3)} \), etc.

- Once we have selected \(M \) tuples, we have thus dismissed \(t \cdot M \leq \beta \cdot n \cdot \gamma^n \cdot M \) sign tuples.

- So, as long as this number is smaller than the overall number \(2^n \) of sign tuples, we can continue selecting.
63. Proof from Part 4 (conclusions)

- Our procedure ends when we have selected M tuples for which $\beta \cdot n \cdot \gamma^n \cdot M \geq 2^n$.

- Thus, we have selected $M \geq \left(\frac{2}{\gamma}\right)^n \cdot \frac{1}{\beta \cdot n}$ tuples.

- So, we have indeed selected exponentially many tuples.

- Hence, $p_n \leq \frac{1}{M} \leq \beta \cdot n \cdot \left(\frac{\gamma}{2}\right)^n$, i.e.,

 $$p_n \leq \beta \cdot n \cdot c^n, \text{ where } c \overset{\text{def}}{=} \frac{\gamma}{2} < 1.$$

- So, the probability p_n is indeed exponentially decreasing. The main result is proven.