How to Estimate, Take Into Account, and Improve Travel Time Reliability in Transportation Networks

Ruey L. Cheu, Vladik Kreinovich, François Modave, Gang Xiang, Tao Li, and Tanja Magoc

University of Texas, El Paso, TX 79968, USA
contact email vladik@utep.edu
1. Decreasing Traffic Congestion: Formulation of the Problem

- **Practical problem:** decreasing traffic congestion.
- **Important difficulty:** a new road can worsen traffic congestion.
- **Conclusion:** importance of the preliminary analysis of the results of road expansion.
- **Traditional approach** assumes that we know:
 - the exact amount of traffic going from zone A to zone B (*OD*-matrix), and
 - the exact capacity of each road segment.
- **Limitations:** in practice, we only know all this with uncertainty.
- **What we do:** we show how to take this uncertainty into account in traffic simulations.
2. Traffic Assignment: Brief Reminder

- **Traffic demand:** \# of drivers \(d_{ij} \) who need to go from zone \(i \) to zone \(j \) – *origin-to-destination* (O-D) matrix.

- **Capacity** of a road link – the number \(c \) of cars per hour which can pass through this link.

- **Travel time along a link:** \(t = t^f \cdot \left[1 + a \cdot \left(\frac{v}{c} \right)^\beta \right] \), where:
 - \(t^f = L/s \) is a *free-flow* time (\(s \) is the speed limit),
 - \(a \approx 0.15 \) and \(\beta \approx 4 \) are empirical constants.

- **Equilibrium:** when
 - the travel time along all used alternative routes is exactly the same, and
 - the travel times along other un-used routes is higher.

- **Algorithms:** there exist efficient algorithms for finding the equilibrium.
3. How We Can Use the Existing Traffic Assignment Algorithms to Solve Our Problem: Analysis

- **Main objective:** predict how different road project affect future traffic congestion.

- **Future traffic demands – what is known:** there exist techniques for predicting daily O-D matrices.

- **What is lacking:** we need to “decompose” the daily O-D matrix into 1 hour (or 15 minute) intervals.

- **1st approximation:** assume that the proportion of drivers starting at, say 6 to 7 am is the same as now.

- **Need for a more accurate approximation:**
 - drivers may start early because of congestion;
 - if a new road is built, they will start later;
 - the % of those who start 6–7 am will decrease.

- **We cover:** both approximations.
4. Towards a More Accurate Approximation to O-D Matrices

- **Describing preferences**: empirical utility formula
 \[
 u_i = -0.1051 \cdot E(T) - 0.0931 \cdot E(SDE) - 0.1299 \cdot E(SDL) - 1.3466 \cdot P_L - 0.3463 \cdot \frac{S}{E(T)},
 \]
 where \(E(X) \) means expected value,
 - \(T \) is the travel time \(T \),
 - \(SDE \) is the wait time when arriving early,
 - \(SDL \) is the delay when arriving late,
 - \(P_L \) is the probability of arriving late, and
 - \(S \) is the variance of the travel time.

- **Logit model**: the probability \(P_i \) that a driver will choose the \(i \)-th time interval is proportional to \(\exp(u_i) \):
 \[
 P_i = \frac{\exp(u_i)}{\exp(u_1) + \ldots + \exp(u_n)}.
 \]
5. A Seemingly Natural Idea and Its Limitations

- **Seemingly natural idea:**
 - start with the 1st approximation O-D matrices M_1;
 - based on M_1, we find travel times, and use them to find the new O-D matrices $M_2 \equiv F(M_1)$;
 - based on M_2, we find travel times, and use them to find the new O-D matrices $M_3 \equiv F(M_2)$;
 - repeat until converges.

- **Toy example illustrating a problem:**
 - now: no congestion, all start at 7:30, work at 8 am;
 - M_1: full O-D matrix for 7:30 am, 0 for 7:15 am;
 - based on this M_1, we get huge delays;
 - M_2: everyone leaves for work early at 7:15 am;
 - at 7:30, roads are freer, so in M_3, all start at 7:30;
 - no convergence: $M_1 = M_3 = \ldots \neq M_2 = M_4 \ldots$
6. A More Realistic Approach

- *Above idea:* drivers make decisions based only on previous day traffic.

- *More accurate idea:* drivers make decisions based on the average traffic over a few past days.

- *Resulting process:*
 - start with the 1st approximation O-D matrices M_1;
 - for $i = 2, 3, \ldots$:
 * compute the average $E_i = \frac{M_1 + \ldots + M_i}{i}$,
 * find traffic times based on E_i;
 * use these traffic times to compute a new O-D matrix $M_{i+1} = F(E_i)$;
 * repeat until converges.

- *Process converges:* on toy examples, on El Paso network, etc.
7. Algorithm Simplified

- **Main idea:** once we know the previous average E_i, we can compute

$$E_{i+1} = \frac{(M_1 + \ldots + M_i) + M_{i+1}}{i + 1} = \frac{i \cdot E_i + M_{i+1}}{i + 1} = E_i \cdot \left(1 - \frac{1}{i+1}\right) + M_{i+1} \cdot \frac{1}{i + 1}.$$

- **We know:** that $M_{i+1} = F(E_i)$.

- **Resulting algorithm:**
 - start with the 1st approximation O-D matrices

$$E_1 = M_1;$$

 - compute $E_{i+1} = E_i \cdot \left(1 - \frac{1}{i+1}\right) + F(E_i) \cdot \frac{1}{i + 1};$

 - repeat until converges.
8. Taking Uncertainty into Account

- **Deterministic model:** \(t = t^f \cdot \left[1 + a \cdot \left(\frac{v}{c} \right)^\beta \right] \).

- **Traffic assignment:** a driver minimizes the travel time \(t = t_1 + \ldots + t_n \).

- **In practice:** travel times vary.

- **Decision theory:** maximize expected utility \(E[u] \).

- **How utility depends on travel time:** \(u(t) = -U(t) \), where \(U(t) = \exp(\alpha \cdot t) \).

- **Conclusion:** the driver minimizes
 \[
 E[U(t)] = E[\exp(\alpha \cdot t)] = E[\exp(\alpha \cdot (t_1 + \ldots + t_n))] = E[\exp(\alpha \cdot t_1) \cdot \ldots \cdot \exp(\alpha \cdot t_n)].
 \]

- Deviations on different links are independent, so
 \[
 E[U(t)] = E[\exp(\alpha \cdot t_1)] \cdot \ldots \cdot E[\exp(\alpha \cdot t_n)].
 \]
9. Taking Uncertainty into Account (cont-d)

- Minimizing $E[U(t)] = E[\exp(\alpha \cdot t_1)] \cdot \ldots \cdot E[\exp(\alpha \cdot t_n)]$\
 \Leftrightarrow minimizing $\sum_{i=1}^{n} \tilde{t}_i$, where $\tilde{t}_i \overset{\text{def}}{=} \ln(E[\exp(\alpha \cdot t_i)])$.

- \tilde{t} depends on t^f and $r \overset{\text{def}}{=} \frac{t - t^f}{t}$: $\tilde{t} = F(t^f, r)$.

- If we divide a link into sublinks, we conclude that $F(t^f_1 + t^f_2, r) = F(t^f_1, r) + F(t^f_2, r)$, hence $\tilde{t} = t^f \cdot k(r)$.

- For no-congestion case $r = 0$, we have $\tilde{t} = t^f$, so $k(0) = 1$ and $k(r) = 1 + a_0 \cdot r + a_2 \cdot r^2 + \ldots$

- Empirical analysis: $a_1 \approx 1.4, b \approx 0$, so\
 $$\tilde{t} = t^f \cdot \left[1 + a \cdot a_1 \cdot \left(\frac{v}{c}\right)^\beta\right].$$

- Solution: use the standard travel time formula with $a \cdot a_1 \approx 0.21$ instead of $a \approx 0.14$.
10. Acknowledgments

This work was supported in part by:

- by Texas Department of Transportation contract No. 0-5453,

- by National Science Foundation grants HRD-0734825, EAR-0225670, and EIA-0080940,

- by the Japan Advanced Institute of Science and Technology (JAIST) International Joint Research Grant 2006-08, and

- and by the Max Planck Institut für Mathematik.
11. Logit Discrete Choice Model: A New Justification

- **Reasonable assumption:** if we add same incentive to all routes, probabilities will not change.
- **For 2 routes:** $P_1 = F(\Delta V)$, where $\Delta V \equiv V_1 - V_2$.
- **Bayes theorem:**

 $$P(H_i \mid E) = \frac{P(E \mid H_i) \cdot P_0(H_i)}{P(E \mid H_1) \cdot P_0(H_1) + \cdots + P(E \mid H_n) \cdot P_0(H_n)}.$$

- **Idea:** if we add an incentive v_0 to one of the routes, this changes the probability of selecting this route:

 $$F(\Delta V + v_0) = \frac{A(v_0) \cdot F(\Delta V)}{A(v_0) \cdot F(\Delta V) + B(v_0) \cdot (1 - F(\Delta V))}.$$

- **Conclusion:** $F(\Delta V) = \frac{1}{1 + e^{-\beta \cdot \Delta V}}$, so

 $$p_1 = F(V_1 - V_2) = \frac{e^{\beta \cdot V_1}}{e^{\beta \cdot V_1} + e^{\beta \cdot V_2}}.$$
12. **Towards an Optimal Algorithm for Computing Fixed Points**

- **Idea:** when iterations $x_{k+1} = f(x_k)$ do not converge,
 \[
x_{k+1} = x_k + \alpha \cdot (f(x_k) - x_k) = (1 - \alpha_k) \cdot x_k + \alpha_k \cdot f(x_k).
 \]

- **Question:** which choice of α_k is best?

- **Idea:** this is a discrete approximation to a continuous-time system
 \[
 \frac{dx}{dt} = \alpha(t) \cdot (f(x) - x).
 \]

- **Scale invariance:** the system should not change if we use a different discretization, i.e., re-scale t to $t' = t/\lambda$:
 \[
 \frac{dx}{dt'} = (\lambda \cdot \alpha(\lambda \cdot t')) \cdot (f(x) - x).
 \]

- **Conclusion:** $\lambda \cdot \alpha(\lambda \cdot t') = a(t')$, so for $\lambda = 1/t'$, we get
 \[
 \alpha(t') = \frac{c}{t'}
 \]
 for some c.

- **Fact:** this is exactly what we used: $\alpha_k = 1/k$.
13. Exponential Disutility Functions in Transportation Modeling: Justification

- **Situation:**

```
   t0       t1
  C --- A --- B
     t2
```

- **Reasonable assumption:** the driver starting at C will choose the same road as the driver starting at A.

- **Formally:** if $E[u(t_1)] < E[u(t_2)]$ then
 $E[u(t_1 + t_0)] < E[u(t_2 + t_0)]$.

- **Result:** $u(t) = t$, $u(t) = \exp(c \cdot t)$, or
 $u(t) = -\exp(-c \cdot t)$.

- **Fact:** this is exactly the empirically justified formula used in transportation.