Bilinear Models from System Approach Justified for Classification, with Potential Applications to Bioinformatics

Richard Aló1, François Modave2, Vladik Kreinovich2, David Herrera2, Xiaojing Wang2

1Center for Computational Sciences & Advanced Distributed Simulation, University of Houston-Downtown, One Main Street, Houston, TX 77002, USA, RAlo@uh.edu

2Department of Computer Science, University of Texas at El Paso, El Paso, TX 79968, USA, vladik@utep.edu
1. System Approach: In Brief

- **Problem:** often, we do not know the exact dynamics \(\dot{x}_i = f_i(x_1, \ldots, x_n) \).

- **Solution:** build the expressions for \(f_i \) based on common sense (von Bertalanffy, Forrester, Meadows).

- **Case 1:** increase in \(x_i \) slows down the growth of \(x_j \).

- **Suggestion:** \(f_j \) includes a term \(-k \cdot x_i\) with \(k > 0\).

- **Case 2:** \(x_j \) and \(x_k \), when combined, enhance the growth of \(x_i \).

- **Suggestion:** \(f_i \) includes \(+k \cdot x_j \cdot x_k\).

- **Comment:** values of \(k \) are determined empirically.

- Common sense rarely goes beyond simple interaction, so we have **bilinear** \(f_i \).

- **Successes:** good qualitative predictions.
2. **Systems Approach in Classification**

- **Examples:**
 - separate stocks with a good growth potential from the risky ones, or
 - separate cancerous cells from the normal ones.
- **Idea:** use a discrimination function $f(x_1, \ldots, x_n)$:
 - objects with $f > 0$ belong to the first class, and
 - objects with $f < 0$ belong to the second class.
- **Common sense:** leads to bilinear f.
- **Unexpected phenomenon:**
 - for system dynamics, we had *qualitative* predictions;
 - for classification, we have good *quantitative* fit.
- **Our objective:** explain this mystery.
3. Approximations of Different Order of Accuracy: General Idea

- **Assumption:** the actual (unknown) discrimination function \(f(x_1, \ldots, x_n) \) is smooth.

- **Conclusion:** in the neighborhood \(U \) of a point \(\tilde{x} = (\tilde{x}_1, \ldots, \tilde{x}_n) \), we keep only lower order Taylor terms.

- **Different points \(\tilde{x} \):**
 - if \(\tilde{x} \) is in class 1, then \(U \) is in class 1;
 - if \(\tilde{x} \) is in class 2, then \(U \) is in class 2;
 - conclusion: the problem is interesting only when \(\tilde{x} \) is on the border, i.e., \(f(\tilde{x}_1, \ldots, \tilde{x}_n) = 0 \).

- **Simplification:**
 - Idea: take new coordinates \(x_i \rightarrow x_i - \tilde{x}_i \) in which the starting point is \((0, \ldots, 0)\).
 - Result: starting point is 0, and \(f(0, \ldots, 0) = 0 \).
4. **First and Second Approximations**

- **General idea:** $f(0, \ldots, 0) = 0$.

- **First approximation:** linear discrimination function

 $$f(x_1, \ldots, x_n) = \sum_{i=1}^{n} a_i \cdot x_i.$$

- **Second approximation:** quadratic function

 $$f(x_1, \ldots, x_n) = \sum_{i=1}^{n} a_i \cdot x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \cdot x_i \cdot x_j.$$

- **Beyond bilinear:** this general expression:

 - has linear terms $a_i \cdot x_i$;
 - has bilinear terms $a_{ij} \cdot x_i \cdot x_j$ for $i \neq j$;
 - also has purely quadratic (not bilinear) terms $a_{ii} \cdot x_i^2$ (corresponding to $i = j$).
5. For System Dynamics, Bilinear Functions Provide a Rather Crude Approximation

- **Fact:** in linear approximation, we ignore quadratic (and higher order) terms.

- **Accuracy of linear approximation:** quadratic in x_i.

- **Accuracy of quadratic approximation:** cubic in x_i.

- **Accuracy of bilinear approximation:**
 - **fact:** we ignore quadratic terms $a_{ii} \cdot x_i^2$;
 - **conclusion:** accuracy is quadratic in x_i.

- **Bad news:** same asymptotic as linear.

- **Good news:**
 - **linear approximation:** we ignore n^2 terms $a_{ij} \cdot x_i \cdot x_j$, so accuracy is $n^2 \cdot \delta$;
 - **bilinear approximation:** we ignore n terms $a_{ii} \cdot x_i^2$, so accuracy is $n \cdot \delta \ll n^2 \cdot \delta$.
6. The Fact that We Are Interested in Classification Applications Allows Further Simplifications

- **In dynamics applications**: the function $f(x_1, \ldots, x_n)$ can be determined from observations.

- **In the classification applications**: we only observe the signs of $f(x_1, \ldots, x_n)$.

- **Conclusion**: a new function $f'(x_1, \ldots, x_n)$ with the same signs leads to the same classification:

 \[
 f(x_1, \ldots, x_n) > 0 \text{ if and only if } f'(x_1, \ldots, x_n) > 0; \\
 f(x_1, \ldots, x_n) > 0 \text{ if and only if } f'(x_1, \ldots, x_n) > 0.
 \]

- **What we plan to do**: we prove that

 - for every quadratic function $f(x_1, \ldots, x_n)$,
 - there is a bilinear function $f'(x_1, \ldots, x_n)$ with the same signs.
7. Explanation of Bilinear Functions

- **Idea:** \(f'(x_1, \ldots, x_n) = f(x_1, \ldots, x_n) \cdot \left(1 + \sum_{j=1}^{n} b_j \cdot x_j\right) \).

- **Good news:** for \(x \approx 0 \), \(\left| \sum_{i=j}^{n} b_j \cdot x_j \right| \ll 1 \), hence \(f(x_1, \ldots, x_n) \) and \(f'(x_1, \ldots, x_n) \) have the same sign.

- **General case:** \(f(x_1, \ldots, x_n) = \sum_{i=1}^{n} a_i \cdot x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \cdot x_i \cdot x_j \), hence

\[
 f'(x_1, \ldots, x_n) = f(x_1, \ldots, x_n) + \left(\sum_{i=1}^{n} a_i \cdot x_i \right) \cdot \left(\sum_{j=1}^{n} b_j \cdot x_j \right) .
\]

- **Conclusion:** for \(b_i = -\frac{a_{ii}}{a_i} \), we have a bilinear \(f' \).

- **Comment:** this is only possible in the generic case, when \(a_i \neq 0 \) for all \(i \).
8. Discussion: A Similar Simplification Is Not Always Possible for Higher Order Models

- **We proved:** quadratic f can be reduced to bilinear f'.
- **Natural question:** can we reduce cubic f to trilinear

$$f' = \sum_{i} a_i \cdot x_i + \sum_{i,j} a_{ij} \cdot x_i \cdot x_j + \sum_{i,j,k} a_{ijk} \cdot x_i \cdot x_j \cdot x_k?$$

- **Answer:** no, even for $n = 3$:
 - to describe a general trilinear function, we need 7 parameters $a_1, a_2, a_3, a_{12}, a_{13}, a_{23}$, and a_{123};
 - a general cubic f can be described by a discriminating curve $x_3 = F(x_1, x_2)$, where a general cubic

$$F(x_1, x_2) = b_1 \cdot x_1 + b_2 \cdot x_2 + b_{11} \cdot x_1^2 + b_{12} \cdot x_1 \cdot x_2 + b_{22} \cdot x_2^2 +$$

$$b_{111} \cdot x_1^3 + b_{112} \cdot x_1^2 \cdot x_2 + b_{122} \cdot x_1 \cdot x_2^2 + b_{222} \cdot x_2^3$$

requires $9 > 7$ parameters.
9. Auxiliary Question: Can we Get a Further Reduction from Bilinear Functions?

- To describe a bilinear function: of n variables, we need n coefficients a_i and $\frac{n \cdot (n - 1)}{2}$ coefficients a_{ij} ($i \neq j$).

- Total number of parameters: $\frac{1}{2} \cdot (n^2 + n)$.

- Generic second-order classification: separating surface

 $x_n = F(x_1, \ldots, x_{n-1})$, with

 $$F(x_1, \ldots, x_{n-1}) = \sum_{i=1}^{n} b_i \cdot x_i + \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} b_{ij} \cdot x_i \cdot x_j.$$

- To describe F: we need $2 \cdot (n - 1)$ parameters b_i and b_{ii} and $\frac{(n - 1) \cdot (n - 2)}{2}$ parameters b_{ij} ($i \neq j$).

- Total number of parameters: $\frac{1}{2} \cdot (n^2 + n) - 1$.
10. Auxiliary Question: Can we Get a Further Reduction from Bilinear Functions? (cont-d)

- To describe a bilinear function: of \(n \) variables, we need \(\frac{1}{2} \cdot (n^2 + n) \) parameters.

- To describe a general quadratic discrimination: we need \(\frac{1}{2} \cdot (n^2 + n) - 1 \) parameters.

- Conclusion: there is only one extra parameter in the bilinear expression.

- Reduction: \(a_1 = \pm 1 \), by taking

\[
f'(x_1, \ldots, x_n) = \frac{1}{|a_1|} \cdot f(x_1, \ldots, x_n).
\]

- Comment: clearly, \(f(x_1, \ldots, x_n) \) and \(f'(x_1, \ldots, x_n) \) have the same signs.

- Conclusion: no further reduction is possible.
11. Acknowledgments

This work was supported in part by:

- NASA under cooperative agreement NCC5-209,
- NSF grants EAR-0225670 and DMS-0532645,
- Star Award from the University of Texas System, and
- Texas Department of Transportation grant No. 0-5453.