Computing the Cube of an Interval Matrix Is NP-Hard

Olga Kosheleva, Vladik Kreinovich
NASA Pan-American Center for Earth and Environmental Studies
University of Texas at El Paso
El Paso, TX 79968, USA
vladik@cs.utep.edu

Günter Mayer
Dept. of Math., University of Rostock, Germany

Hung T. Nguyen
Dept. of Math. Sciences, New Mexico State University
Las Cruces, NM 88003, USA, hunguyen@nmsu.edu

March 9, 2005
1. **Why Intervals**

- In many real-life situations, we do not know the exact value of a physical quantity x.
- We only know the interval x of possible values of x.
- This happens, e.g.:
 - if our information about x comes from measurement, and
 - the only information that we have about the possible error of the measuring instrument is that this error is \leq a certain bound Δ.
- In this case, let the measurement result is \tilde{x}.
- We know that $|\tilde{x} - x| \leq \Delta$, where x is the (unknown) actual value of the measured quantity.
- We can conclude that x belongs to the interval $x \overset{\text{def}}{=} [\tilde{x} - \Delta, \tilde{x} + \Delta]$.
2. Why Interval Matrices

- In some physical situations, quantities form a matrix

\[
A = \begin{pmatrix}
 a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 a_{m1} & \cdots & a_{mj} & \cdots & a_{mn}
\end{pmatrix}.
\]

- *Example:* system’s dynamics

\[
s_i(t + 1) = f_i(s_1(t), \ldots, s_n(t)).
\]

- Often, we are interested in small deviations \(\Delta s_i(t) \overset{\text{def}}{=} s_i(t) - s_i^{(0)}\) from the stable state \(s^{(0)}\).

- Linearization leads to \(\Delta s_i(t + 1) = \sum_{j=1}^{n} a_{ij} \cdot \Delta s_i(t)\) or \(\Delta s(t + 1) = A \Delta s(t)\).

- Often, for each \(i\) and \(j\), we only know the interval \(a_{ij}\) of possible values of \(a_{ij}\) – an interval matrix.
3. Why Products of Interval Matrices

- **Why product:**
 - if transition $t \rightarrow t + 1$ is described by a matrix A,
 - transition $t + 1 \rightarrow t + 2$ is described by B,
 - then transition $t \rightarrow t + 2$ is described by the product $C = BA$, with entries
 \[c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}. \]

- In case of interval uncertainty, we know A and B, and we want to know
 \[(AB)_{ij} \stackrel{\text{def}}{=} \{ (AB)_{ij}; A \in A, B \in B \}. \]

- Similar, for a transition $t \rightarrow t + 3$, we must know:
 \[(ABC)_{ij} \stackrel{\text{def}}{=} \{ (ABC)_{ij}; A \in A, B \in B, C \in C \}. \]

- **Problem:** How can we compute these products?
4. The Problem of Multiplying Interval Matrices is a Particular Case of a General Problem

- **General problem:**
 - we have a function \(f(x_1, \ldots, x_n) \) of \(n \) variables,
 - we know the interval \(x_i \) of possible values of each of these variables, and
 - we must find the range
 \[
 f(x_1, \ldots, x_n) \overset{\text{def}}{=} \{ f(x_1, \ldots, x_n); x_1 \in x_1, \ldots, x_n \in x_n \}
 \]
 of this function when \(x_i \in x_i \).

- This general problem is called the problem of *interval computations*.

- **Known:** in general, NP-hard.
5. Interval Computations

- **Interval arithmetic**: explicit formulas when \(f = +, -, \cdot, \text{etc.} \):

\[
[x_1, x_1] + [x_2, x_2] = [x_1 + x_2, x_1 + x_2];
\]

\[
[x_1, x_1] \cdot [x_2, x_2] = \left[\min(x_1 \cdot x_2, x_1 \cdot x_2, x_1 \cdot x_2, x_1 \cdot x_2), \right.
\]
\[
\left. \max(x_1 \cdot x_2, x_1 \cdot x_2, x_1 \cdot x_2, x_1 \cdot x_2) \right].
\]

- **Straightforward interval computations**:
 - replace each operation forming the algorithm \(f \)
 - with the corresponding operation from interval arithmetic.

- **Case of single-use expressions (SUE)**: exact result.

- **Conclusion**: we get the exact product of two interval matrices:

\[
c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}.
\]
6. Computing the Product of Three Interval Matrices is NP-Hard

- **Problem**: computing the product \(D = ABC \) of three interval matrices.

- **Situation**: the expression \(d_{ij} = \sum_{k=1}^{n} \sum_{l=1}^{n} a_{ik} \cdot b_{kl} \cdot c_{lj} \) is not SUE.

- **Conclusion**: we can only guarantee that the straightforward interval computation leads to an enclosure – i.e., the result may not be always exact.

- **Our first (simple) result**: The problem of computing the exact product of three interval matrices is NP-hard.

- **Idea of the proof**: it is NP-hard, given a square matrix \(B = (b_{ij})_{i,j} \), to compute the range of \(x^T By \), where \(x_i = y_j = [-1, 1] \).
7. Why Power of a Matrix

- **Situation**: in many practical situations, we know that the system is stationary.

- This means that the transition from each moment of time to the next is described by the same matrix A.

- Then:
 - transition $t \rightarrow t + 2$ is described by A^2,
 - transition $t \rightarrow t + 3$ is described by A^3, etc.

- In case of interval uncertainty, we only know that $A \in A$ for a given interval matrix A.

- **Problem**: compute, for every i and j, the set (interval) of possible values of A^2 and/or A^3:

$$ (A^2)_{ij} \overset{\text{def}}{=} \{ (A^2)_{ij} ; A \in A \}; \quad (A^3)_{ij} \overset{\text{def}}{=} \{ (A^3)_{ij} ; A \in A \}. $$
8. Feasible Algorithm for Computing the Square of an Interval Matrix

- **Situation:** for \(B = A^2 \), the expression

\[
b_{ij} = \sum_{k=1}^{n} a_{ik} \cdot a_{kj}
\]

is not SUE.

- **Example:** for \(i \neq j \), we have two occurrences of \(a_{ij} \): \(a_{ij} \cdot a_{jj} \) (when \(k = j \)) and \(a_{ii} \cdot a_{ij} \) (when \(k = j \)).

- **Idea:** reformulate into SUE:

\[
b_{ij} = \sum_{k \neq i, k \neq j} a_{ik} \cdot a_{kj} + a_{ij} \cdot (a_{ii} + a_{jj}) \quad (i \neq j);
\]

\[
b_{ii} = \sum_{k \neq i} a_{ik} \cdot a_{ki} + a_{ii}^2.
\]

- **Solution:** a feasible algorithm for computing \(A^2 \):

\[
b_{ij} = \sum_{k \neq i, k \neq j} a_{ik} \cdot a_{kj} + a_{ij} \cdot (a_{ii} + a_{jj}) \quad (i \neq j);
\]

\[
b_{ii} = \sum_{k \neq i} a_{ik} \cdot a_{ki} + a_{ii}^2.
\]
9. Interval Matrix Product Is Not Associative: Example

\[
A = \begin{pmatrix} 1 & [0,1] \\ 1 & -1 \end{pmatrix}; \text{ then } A \ast_s A = \begin{pmatrix} [1,2] & [-1,1] \\ 0 & [1,2] \end{pmatrix};
\]

\[
A \ast_s (A \ast_s A) = \begin{pmatrix} [1,2] & [-1,3] \\ [1,2] & [-3,0] \end{pmatrix};
\]

\[
(A \ast_s A) \ast_s A = \begin{pmatrix} [0,3] & [-1,3] \\ [1,2] & [-2,-1] \end{pmatrix} \neq A \ast_s (A \ast_s A).
\]

Here, \(A = \begin{pmatrix} 1 & a_{12} \\ 1 & -1 \end{pmatrix} \); so \(A^2 = \begin{pmatrix} 1 + a_{12} & 0 \\ 0 & 1 + a_{12} \end{pmatrix} \);

\[
A^3 = \begin{pmatrix} 1 + a_{12} & a_{12} + a_{12}^2 \\ 1 + a_{12} & -(1 + a_{12}) \end{pmatrix}; \text{ hence}
\]

\[
A^2 = \begin{pmatrix} [1,2] & 0 \\ 0 & [1,2] \end{pmatrix}; \quad A^3 = \begin{pmatrix} [1,2] & [0,2] \\ [1,2] & [-2,-1] \end{pmatrix}.
\]
10. Computing the Cube of an Interval Matrix Is NP-Hard

• **Result:** in general, computing A^3 is NP-hard.

• **Conclusions:**

 – Computing the product of interval matrices is important in many applications.

 – For two matrices, the corresponding problems are computationally feasible:

 * computing the exact range for the product of two interval matrices;
 * computing the square of an interval matrix.

 – The following 3-matrix problems are NP-hard:

 * computing the exact range for the product of three matrices;
 * computing the third power of a matrix.
11. Acknowledgments

- This work was supported:
 - by the German Research Council DFG,
 - by NASA grant NCC5-209,
 - by USAF grant F49620-00-1-0365,
 - by NSF grants EAR-0112968, EAR-0225670, and EIA-0321328,
 - by Army Research Laboratories grant DATM-05-02-C-0046, and
 - by the NIH grant 3T34GM008048-20S1.

- The authors are thankful:
 - to the participants of the International Dagstuhl Seminar “Numerical Software with Result Verification” and
 - to the anonymous referees.
12. Proof

- **Idea:** use the same known NP-hard problem:
 - given a square matrix $B = (b_{ij})$,
 - compute the range of $x^T By$, where

 $x_i = y_j = [-1, 1]$.

- Specifically, for each $n \times n$ matrix B, we will consider the following $(2n + 2) \times (2n + 2)$ interval matrix:

 $$A = \begin{pmatrix}
 0 & U \\
 L & 0
 \end{pmatrix},$$

 where

 $$L = \begin{pmatrix}
 0 & \cdots & 0 & \cdots \\
 \vdots & \ddots & \vdots & \ddots \\
 0 & \cdots & B & \cdots \\
 \cdots & \cdots & \cdots & \cdots
 \end{pmatrix};
 U = \begin{pmatrix}
 0 & x_1 & \cdots & x_n \\
 y_1 & \cdots & \cdots & \cdots \\
 \vdots & \cdots & \cdots & \cdots \\
 y_n & \cdots & \cdots & \cdots
 \end{pmatrix}.$$
13. **Proof (cont-d)**

- For every matrix

\[A = \begin{pmatrix} 0 & U \\ L & 0 \end{pmatrix} \in A = \begin{pmatrix} 0 & U \\ L & 0 \end{pmatrix}, \]

we have

\[A^2 = \begin{pmatrix} 0 & U \\ L & 0 \end{pmatrix} \begin{pmatrix} 0 & U \\ L & 0 \end{pmatrix} = \begin{pmatrix} UL & 0 \\ 0 & LU \end{pmatrix}, \]

- Hence

\[A^3 = A^2 A = \begin{pmatrix} UL & 0 \\ 0 & LU \end{pmatrix} \begin{pmatrix} 0 & U \\ L & 0 \end{pmatrix} = \begin{pmatrix} 0 & ULU \\ LUL & 0 \end{pmatrix}. \]

- Here,

\[UL = \begin{pmatrix} 0 & x^T \\ y & 0 \end{pmatrix} \begin{pmatrix} 0 & 0^T \\ 0 & B \end{pmatrix} = \begin{pmatrix} 0 & x^T B \\ 0 & 0 \end{pmatrix}. \]
14. Proof (final part)

- Hence

\[
ULU = \begin{pmatrix}
0 & x^T B \\
0 & 0
\end{pmatrix} \begin{pmatrix}
0 & x^T \\
y & 0
\end{pmatrix} = \begin{pmatrix}
z & 0 \\
0 & 0
\end{pmatrix},
\]

where \(z = x^T By \).

- We have shown that

\[
A^3 = \begin{pmatrix}
0 & ULU \\
LUL & 0
\end{pmatrix}.
\]

- So, \((ULU)_{11} = (A^3)_{1,n+2} = x^T By\).

- We know that computing the range of \(x^T By \) is NP-hard.

- We conclude that computing the range \(A^3 \) is also an NP-hard problem.