Towards More Adequate Representation of Uncertainty: From Intervals to Set Intervals, with the Possible Addition of Probabilities and Certainty Degrees

J. T. Yao1, Y. Y. Yao1, V. Kreinovich2, P. Pinheiro da Silva2, S. A. Starks2, G. Xiang2, and H. T. Nguyen3

1Department of Computer Science, University of Regina, Saskatchewan, Canada
2NASA Pan-American Center for Earth and Environmental Studies University of Texas, El Paso, TX 79968, USA
3Department of Mathematical Sciences New Mexico State University Las Cruces, NM 88003, USA
contact email vladik@utep.edu
1. Need for Set Intervals

- **Ideal case:** complete knowledge.

- **We are interested in:** properties P_i such as “high fever”, “headache”, etc.

- **Complete:** we know the exact set S_i of all the objects that satisfy each property P_i.

- **In practice,** we usually only have *partial* knowledge:
 - the set \underline{S}_i of all the objects about which we know that P_i holds, and
 - the set \overline{S}_i about which we know that P_i may hold (i.e., equivalently, that we have not yet excluded the possibility of P_i).

- **Set interval:** the only information about the actual (unknown) set $S_i = \{x : P_i(x)\}$ is that $\underline{S}_i \subseteq S_i \subseteq \overline{S}_i$, i.e., that

 $$S_i \in S_i = [\underline{S}_i, \overline{S}_i] \overset{\text{def}}{=} \{S_i : \underline{S}_i \subseteq S_i \subseteq \overline{S}_i\}.$$
2. Need for Set Operations with Set Intervals

- **Main problem:**
 - we have some information about the original properties P_i;
 - we would like to describe the set $S = \{x : P(x)\}$ of all the values that satisfy some combination $P \overset{\text{def}}{=} f(P_1, \ldots, P_n)$.

- **Example (informal):** flu \leftrightarrow high fever and headache and not rash.

- **Example (formal):** $f(P_1, P_2, P_3) = P_1 \& P_2 \& \neg P_3$.

- **Ideal case:** we know the exact sets $S_i = \{x : P_i(x)\}$.

- **Solution:**
 - $f(S_1, \ldots, S_n)$ is composition of union, intersection, and complement;
 - apply the corresponding set operation, step-by-step, to the known sets S_i.

- **General case:** describe the class S of all possible sets S corresponding to different $S_i \in S_i$:

$$S \overset{\text{def}}{=} \{f(S_1, \ldots, S_n) : S_1 \in S_1, \ldots, S_n \in S_n\}.$$
3. Elementary Set Operations and Their Use

- **Simplest case:** $n = 2$ and $f(P_1, P_2)$ is an elementary set operation (union, intersection, complement).

- **Useful property:** elementary set operations are monotonic in \subseteq.

- For these operations, formulas for estimating S are known:
 \[
 [A, \overline{A}] \cup [B, \overline{B}] = [A \cup B, \overline{A} \cup \overline{B}]; \quad [A, \overline{A}] \cap [B, \overline{B}] = [A \cap B, \overline{A} \cap \overline{B}];
 \]
 \[
 -[A, \overline{A}] = [-A, -\overline{A}].
 \]

- **General case:** idea (similar to interval computations)

 - parse the expression $f(S_1, \ldots, S_n)$;
 - replace each elementary set operation by the corresponding operation with interval sets.

- **Result:** we get an enclosure for $S = [S, \overline{S}]$.

- **Problem:** we may get excess width.

- **Example:** for $f(S_1) = S_1 \cup -S_1$, $S_1 = [\emptyset, U]$.

 - actual range: $S = \{U\}$;
 - enclosure: $-S_1 = [\emptyset, U]$, so $S_1 \cup -S_1 = [\emptyset, U] \cup [\emptyset, U] = [\emptyset, U]$.
4. How to Get Exact Set Range? How Difficult Is It?

- **Problem:** in general, set operations such as $S_1 \cup -S_1$ are not \subseteq-monotonic.

- **Solution for computing \overline{S}:**
 - represent $f(S_1, \ldots, S_n)$ in a canonical DNF form
 $$(S_1 \cap -S_2 \cap \ldots \cap S_n) \cup (\ldots) \cup \ldots$$
 - apply straightforward interval computations:
 $$(\overline{S_1} \cap -\overline{S_2} \cap \ldots \cap \overline{S_n}) \cup (\ldots) \cup \ldots$$

- **Proof:** each element from each conjunction $\overline{S_1} \cap -\overline{S_2} \cap \ldots \cap \overline{S_n}$ is possible.

- **Example:** $S_1 \triangle S_2 = (S_1 \cap -S_2) \cup (-S_1 \cap S_2))$, so $\overline{S} = (\overline{S_1} \cap -\overline{S_2}) \cup (-\overline{S_1} \cap \overline{S_2})$.

- **Solution for computing S:** use $S = -(-\overline{S})$, i.e., use CNF.

- **Problem:** turning into DNF or CNF requires exponential time.

- **Comment:** the problem of checking whether $\emptyset \in f(S_1, \ldots, S_n)$ is NP-hard.
5. Intermediate Value Theorem for Set Intervals

- **Situation:** in the range $S = f(S_1, \ldots, S_n)$, we found the intersection \underline{S} and the union \overline{S} of all possible sets.
- **Conclusion:** $S \subseteq [\underline{S}, \overline{S}]$.
- **Theorem:** $S = [\underline{S}, \overline{S}]$.
- **Equivalent formulation:** for every $S \in [\underline{S}, \overline{S}]$, there exist sets $S_1 \in [\underline{S_1}, \overline{S_1}], \ldots, S_n \in [\underline{S_n}, \overline{S_n}]$ for which $S = f(S_1, \ldots, S_n)$.
- **Difficulty:** values $S_i(u)$ and $S(u)$ are discrete (0 or 1), so the standard intermediate value theorem does not apply.
- **Solution:** we define S_i element-by-element.
- **Known:** for each $u \in U$, we have $\underline{S}(u) \leq S(u) \leq \overline{S}(u)$.
- **Conclusion:** $S(u) = \underline{S}(u)$ or $S(u) = \overline{S}(u)$.
- **By definition** of \underline{S} and \overline{S}, in both cases, there exist sets $s_i(u)$ for which $S(u) = f(s_1^{(u)}(u), \ldots, s_n^{(u)}(u))$.
- We take $S_i(u) = s_i^{(u)}(u)$.
6. Fuzzy Sets

- Previous description:
 - about some elements u, we know $P(u)$;
 - about some elements u, we know $\neg P(u)$;
 - about other elements u, we know nothing about $P(u)$.

- Description: sets S and $(-S) = -\overline{S}$.

- Additional information: experts may believe that $P(u)$ holds with some certainty α.

- How to describe this information: a nested family of sets S_α corresponding to α:
 - $S_0 = \overline{S}$;
 - $S_1 = S$;
 - if $\alpha < \alpha'$ then $S_\alpha \subseteq S_{\alpha'}$.

- Traditional description: $\mu_A(u) = \max\{\alpha : u \in S_\alpha\}$.

- Set operations in terms of μ: $\mu_{A \cup B}(u) = \max(\mu_A(u), \mu_B(u))$; $\mu_{A \cap B}(u) = \min(\mu_A(u), \mu_B(u))$; $\mu_{\neg A}(u) = 1 - \mu_A(u)$.
7. Interval-Valued Fuzzy Sets

- **Situation:** for every α, we are not sure which elements belong to S_α and which do not.

- **Description:** $S_\alpha \subseteq \overline{S}_\alpha$.

- **Alternative description:** interval-valued membership function $[\mu_A(u), \overline{\mu}_A(u)]$.

- **Meaning:** for all u, we have $\mu_A(u) \in [\mu_A(u), \overline{\mu}_A(u)]$, i.e., $A \subseteq A \subseteq \overline{A}$.

- **Problem:**
 - we know A_1, \ldots, A_n,
 - we know that $A = f(A_1, \ldots, A_n)$ for some set-expression f;
 - find the range of A:
 $$f(A_1, \ldots, A_n) = \{f(A_1, \ldots, A_n) : A_1 \in A_1, \ldots, A_n \in A_n \}.$$
8. Solution

- **Negative result:** in general, the problem is NP-hard.

- **Straightforward interval computations:**

 \[
 [\underline{\mu}_A(u), \overline{\mu}_A(u)] \cup [\underline{\mu}_B(u), \overline{\mu}_B(u)] = [\max(\underline{\mu}_A(u), \underline{\mu}_B(u)), \max(\overline{\mu}_A(u), \overline{\mu}_B(u))];
 \]

 \[
 [\underline{\mu}_A(u), \overline{\mu}_A(u)] \cap [\underline{\mu}_B(u), \overline{\mu}_B(u)] = [\min(\underline{\mu}_A(u), \underline{\mu}_B(u)), \min(\overline{\mu}_A(u), \overline{\mu}_B(u))];
 \]

 \[
 -[\underline{\mu}_A(u), \overline{\mu}_A(u)] = [1 - \overline{\mu}_A(u), 1 - \underline{\mu}_A(u)].
 \]

- **Good news:** we always get an enclosure.

- **Bad news:** excess width.

- **Solution:** idea. Use DNF for \(\overline{A} \) and CNF for \(A \).

- **Details:** it is slightly different from the usual since we view \(P \) and \(\neg P \) as separate literals.

- Here, \(A \cap \neg A \) is not transformed into \(\emptyset \), so we may have

 \[
 (A_1 \cap \neg A_1 \cap A_2 \cap \neg A_3 \ldots) \cup (\ldots) \ldots
 \]

- **Intermediate value theorem:** follows from continuity of element-by-element function \(A(u) = f(A_1(u), \ldots, A_n(u)) \).
9. Probabilistic Case: In Brief

- **Situation:** we know \(p(A_i) \), we want estimates for \(p(A) \), where \(A = f(A_1, \ldots, A_n) \).
- **In general:** NP-hard.
- **Exp-time algorithm:** LP with \(p(A_1 \& \neg A_2 \& \ldots) \) etc.
- **Feasible algorithm:** expert systems use technique similar to straightforward interval computations.
- **Details:** we parse \(F \) and replace each computation step with corresponding probability operation.
- **Problem:** at each step, we ignore the dependence between the intermediate results \(F_j \).
- **Result:** intervals are too wide (and numerical estimates off).
- **Example:** the estimate for \(P(A \lor \neg A) \) is not 1.
- **Solution:** similarly to the above algorithm, besides \(P(F_j) \), we also compute \(P(F_j \& F_i) \) (or \(P(F_{j1} \& \ldots \& F_{jk}) \)).
- On each step, use all combinations of \(l \) such probabilities to get new estimates.
- **Result:** e.g., \(P(A \lor \neg A) \) is estimated as 1.
10. Similar Idea for Sets

- **Problem:** estimate the range of $f(S_1,\ldots,S_n)$ in polynomial time.

- **Previous algorithm:** for each intermediate set $S_m = S_i \oplus S_j$, we use bounds on S_i and S_j to find bounds on S_m.

- **New idea:** for each m, in addition to bounds on S_m, we also keep (and compute) bounds on

 $$S_{m,k} \overset{\text{def}}{=} S_m \cap S_k, \quad S_{m,-k} \overset{\text{def}}{=} S_m \cap -S_k,$$

 $$S_{-m,k} \overset{\text{def}}{=} -S_m \cap S_k, \quad S_{-m,-k} \overset{\text{def}}{=} -S_m \cap -S_k,$$

 for all $k \leq n$.

- **Example:** $S_m = S_i \cap S_j$, then

 $$S_m \cap S_k = (S_i \cap S_k) \cap (S_j \cap S_k) \quad \text{so} \quad \overline{S}_{m,k} = \overline{S}_{i,k} \cap \overline{S}_{j,k};$$

 $$S_m \cap -S_k = (S_i \cap -S_k) \cap (S_j \cap -S_k) \quad \text{so} \quad \overline{S}_{m,-k} = \overline{S}_{i,-k} \cap \overline{S}_{j,-k};$$

 $$-S_m \cap S_k = (-S_i \cap S_k) \cup (-S_j \cap S_k) \quad \text{so} \quad \overline{S}_{m,k} = \overline{S}_{-i,k} \cup \overline{S}_{-j,k};$$

 $$-S_m \cap -S_k = (-S_i \cap -S_k) \cup (-S_j \cap -S_k) \quad \text{so} \quad \overline{S}_{m,k} = \overline{S}_{-i,-k} \cup \overline{S}_{-j,-k};$$

- **Comment:** similar algorithm is possible for fuzzy sets.
11. Acknowledgments

This work was supported in part:

- by National Science Foundation grants EAR-0225670 and DMS-0532645 and

- by Texas Department of Transportation grant No. 0-5453