From Gauging Accuracy of Quantity Estimates to Gauging Accuracy and Resolution of Field Measurements: Geophysical Case Study

IrinaPerfilieva1, Roumen Anguelov2, Vladik Kreinovich3, and Matt Averill4

1Inst. for Research and Applications of Fuzzy Modeling
University of Ostrava, Czech Republic
2Department of Math. and Applied Math.
Univ. of Pretoria, South Africa
3Department of Computer Science
4Department of Geological Sciences
University of Texas at El Paso
El Paso, Texas 79968, USA
vladik@utep.edu
1. Traditional Applications of Interval Computations: Reminder

- **Objective:** estimate a difficult-to-measure quantity y.
- **Approach:** measure quantities x_1, \ldots, x_n related to x_i by a known dependence $y = f(x_1, \ldots, x_n)$.
- **Fact:** measurements are never absolutely accurate.
- **Conclusion:** the measurement results \tilde{x}_i are, in general, different from the actual (unknown) values x_i.
- **Conclusion:** the result $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$ of data processing differs from $y = f(x_1, \ldots, x_n)$.
- **Frequent situation:** we only know the upper bound Δ_i on the measurement errors $\Delta x_i \triangleq \tilde{x}_i - x_i$: $|\Delta x_i| \leq \Delta_i$.
- **So:** we only know that $x_i \in x_i \triangleq [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$.
- **Interval computations:** find the corresponding range $y = \{ f(x_1, \ldots, x_n) : x_i \in x_i \}$ of y.
2. In Practice, the Situation is Often More Complex

- **Dynamics**: we measure the values \(v(t) \) of a quantity \(v \) at a certain moment of time \(t \).
- **Spatial dependence**: we measure the value \(v(x, t) \) at a certain location \(x \).
- **Geophysical example**: we are interested in the values of the density at different locations and at different depth.
- **Traditional**: uncertainty in the measured value, \(\tilde{v} \approx v \).
- **New**: uncertainty in location \(x \), \(\tilde{x} \approx x \).
- **Additional uncertainty**: the sensor picks up the “average” value of \(v \) at locations close to \(\tilde{x} \).
- **Question**: how to describe and process the new uncertainty (resolution)?
3. Outline

- **Question** (reminder): how to describe and process uncertainty both
 - in the measured value \tilde{v} and
 - in the spatial resolution \tilde{x}?

- **Natural idea**: the answer depends on what we know about the spatial resolution.

- **Possible situations**:
 - we know exactly how the measured values \tilde{v}_i are related to $v(x)$, i.e., $\tilde{v}_i = \int w_i(x) \cdot v(x) \, dx + \Delta v_i$;
 - we only know the upper bound δ on the location error $\tilde{x} - x$ (this is similar to the interval case);
 - we do not even know δ.

- **What we do**: describe how to process all these types of uncertainty.
4. Situations in Which We Have Detailed Knowledge

- **Fact:** all our information about \(v(x) \) is contained in the measured values \(\tilde{v}_i \).

- **Linearity assumption:** \(\tilde{v}_i = v_i + \Delta v_i \), where:
 - we have \(v_i \overset{\text{def}}{=} \int w_i(x) \cdot v(x) \, dx \); and
 - \(\Delta v_i \) is the measurement error; e.g., \(|\Delta v_i| \leq \Delta_i \).

- **Comment:** \(v_i \) can be viewed as the value of \(v(x) \) at a “fuzzy” point characterized by uncertainty \(w_i(x) \).

- **Description of the situation:** we know the weights \(w_i(x) \).

- **Find:** range \([y, \bar{y}] \) for \(y \overset{\text{def}}{=} \int w(x) \cdot v(x) \, dx \).

- **LP solution:** minimize (maximize) \(\int w(x) \cdot v(x) \, dx \) under the constraints
 \[
 v_i \overset{\text{def}}{=} \tilde{v}_i - \Delta_i \leq \int w_i(x) \cdot v(x) \, dx \leq \bar{v}_i \overset{\text{def}}{=} \tilde{v}_i + \Delta_i.
 \]
5. Situations With Detailed Knowledge (cont-d)

- **Reminder**: find the range of $\int w(x) \cdot v(x) \, dx$ when $v_i \leq \int w_i(x) \cdot v(x) \, dx \leq \bar{v}_i$.
- **General case**: when no bounds on $v(x)$, bounds are infinite – unless $w(x)$ is a linear combination of $w_i(x)$.
- **In practice** (e.g., in geophysics): $v(x) \geq 0$.
- **Similar**: imprecise probabilities (Kuznetsova, Walley).
- **Solution**: dual LP problem provides guaranteed bounds

$$\underline{v} = \sup \left\{ \sum y_i \cdot v_i : \sum y_i \cdot w_i(x) \leq w(x) \right\};$$

$$\overline{v} = \inf \left\{ \sum y_i \cdot \bar{v}_i : w(x) \leq \sum y_i \cdot w_i(x) \right\}.$$

- **Easier** than in IP: $w_i(x)$ are localized, and we often have ≤ 2 non-zero $w_i(x)$ at each x.
- **Piece-wise linear** $w_i(x)$ and $w(x)$ – sufficient to check inequality at endpoints.
6. Situations in Which We Only Know Upper Bounds

- **Situation:** we only know;
 - the upper bound Δ on the measurement inaccuracy $\Delta v \overset{\text{def}}{=} \tilde{v} - v$: $|\Delta v| \leq \Delta$, and
 - the upper bound δ on the location error $\Delta x \overset{\text{def}}{=} \tilde{x} - x$: $|\Delta v| \leq \delta$.
- **Consequence:** the measured value \tilde{v} is Δ-close to a convex combination of values $v(x)$ for x s.t. $\|x - \tilde{x}\| \leq \Delta x$.
- **Conclusion:** $v_\delta(\tilde{x}) - \Delta \leq \tilde{v} \leq \overline{v}_\delta(\tilde{x}) + \Delta$, where:
 - $v_\delta(\tilde{x}) \overset{\text{def}}{=} \inf \{ v(x) : \|x - \tilde{x}\| \leq \delta \}$, and
 - $\overline{v}_\delta(\tilde{x}) \overset{\text{def}}{=} \sup \{ v(x) : \|x - \tilde{x}\| \leq \delta \}$.
- **Fact:** measurement errors are random.
- **So:** it makes sense to only consider essential ess inf and ess sup (i.e., inf and sup modulo measure 0 sets).
7. What If a Model Is Only Known With Interval Uncertainty

- **Reminder:** we can tell when an observation \((\tilde{v}, \tilde{x})\) is consistent with a model \(v(x)\):
 \[
 v_\delta(\tilde{x}) - \Delta \leq \tilde{v} \leq \bar{v}_\delta(\tilde{x}) + \Delta.
 \]
- **Fact:** in real life, we rarely have an *exact* model \(v(x)\).
- **Usually:** we have *bounds* on \(v(x)\), i.e., an interval-valued model \(v(x) = [v^-(x), v^+(x)]\).
- **Question:** when is an observation \((\tilde{v}, \tilde{x})\) consistent with an *interval-valued* model?
- **General answer:** when the observation \((\tilde{v}, \tilde{x})\) is consistent with *one* of the models \(v(x) \in v(x)\).
- **A checkable answer:** an observation \((\tilde{v}, \tilde{x})\) is consistent with an interval-valued model \([v^-(x), v^+(x)]\) when
 \[
 v^-_\delta(\tilde{x}) - \Delta \leq \tilde{v} \leq v^+_\delta(\tilde{x}) + \Delta.
 \]
8. Situations in Which We Only Know Upper Bounds (cont-d)

- **Fact:** the actual $v(x)$ is often continuous.

- **Case of continuous $v(x)$:** we can simplify the above criterion.

- **Simplification:** the set \tilde{m} of all measurement results (\tilde{x}, \tilde{x}) is consistent with the model $v(x)$ iff

 \[\forall (\tilde{v}, \tilde{x}) \in \tilde{m} \exists (v(x), x) \in v ((\tilde{v}, \tilde{x}) \text{ is } (\Delta, \delta)-\text{close to } (v(x), x)), \]

 i.e., $|\tilde{v} - v| \leq \Delta$ and $\|x - \tilde{x}\| \leq \delta$.

- **Hausdorff metric:** $d_H(A, B) \leq \varepsilon$ means that:

 \[\forall a \in A \exists b \in B (d(a, b) \leq \varepsilon) \text{ and } \forall b \in B \exists a \in A (d(a, b) \leq \varepsilon). \]

- **Conclusion:** we have an asymmetric version of Hausdorff metric (““quasi-metric”).
9. Example of Asymmetry

- **Case 1:**
 - The actual field: \(v(0) = 1 \) and \(v(x) = 0 \) for \(x \neq 0 \);
 - Measurement results: all zeros, i.e., \(\tilde{v} = 0 \) for all \(\tilde{x} \).
 - Conclusion: all the measurements are consistent with the model.
 - Reason: the value \(\tilde{v} = 0 \) for \(\tilde{x} = 0 \) is consistent with \(v(x) = 0 \) for \(x = \delta \) s.t. \(|\tilde{x} - x| \leq \delta \).

- **Case 2:**
 - The actual field: all zeros, i.e., \(v(x) = 0 \) for all \(x \).
 - Measurement results: \(\tilde{v} = 1 \) for \(\tilde{x} = 0 \), and \(\tilde{v} = 0 \) for all \(\tilde{x} \neq 0 \).
 - Conclusion (for \(\Delta < 1 \)): the measurement \((1, 0)\) is inconsistent with the model.
 - Reason: for all \(x \) which are \(\delta \)-close to \(\tilde{x} = 0 \), we have \(v(x) = 0 \) hence we should have \(|\tilde{x} - v(x)| = |\tilde{x}| \leq \Delta \).
10. Situations with No Information about Location Accuracy

- **Example**: when we solve the seismic inverse problem to find the velocity distribution.

- **Natural heuristic idea**:
 - add a perturbation of size Δ_0 to the reconstructed field $\tilde{v}(x)$;
 - simulate the new measurement results;
 - apply the same algorithm to the simulated results, and reconstruct the new field $\tilde{v}_\text{new}(x)$.

- **Case 1**: perturbations are *not visible* in $\tilde{v}_\text{new}(x) - \tilde{v}(x)$.
- **So**: details of size Δ_0 *cannot* be reconstructed: $\delta > \Delta_0$.

- **Case 2**: perturbations are *visible* in $\tilde{v}_\text{new}(x) - \tilde{v}(x)$.
- **So**: details of size Δ_0 *can* be reconstructed: $\delta \leq \Delta_0$.
11. Towards Optimal Selection of Perturbations

- **Fact:** since perturbations are small, we can safely linearize their effects.

- **Conclusion:**
 - based on the results of perturbations $e_1(x), \ldots, e_k(x)$,
 - we can get the results of any linear combination
 \[e(x) = c_1 \cdot e_1(x) + \ldots + c_k \cdot e_k(x). \]

- **Fact:** usually, there is no preferred spatial location.

- **Conclusion:** we can choose different locations as origins ($x = 0$) of the coordinate system.

- **Natural requirement:** the results of perturbations should not change if we change the origin $x = 0$.
12. Towards Optimal Perturbations (cont-d)

- **Reminder:** the class of perturbations should not change when we change the origin $x = 0$.
- **Fact:** in new coordinates, $x_{\text{new}} = x + x_0$.
- **Conclusion:** the set $\{c_1 \cdot e_1(x) + \ldots + c_k \cdot e_k(x)\}$ must be shift-invariant: $e_i(x + x_0) = \sum_{j=1}^{k} c_{ij}(x_0) \cdot e_j(x)$.
- When $x_0 \to 0$, we get a system of linear differential equations with constant coefficients.
- **General solution:** linear combination of expressions $\exp(\sum a_i \cdot x_i)$ with complex a_i.
- **Fact:** perturbations must be uniformly small.
- **So:** the only bounded perturbations are linear combinations of sinusoids.
- **Conclusion:** use sinusoidal perturbations.
13. Acknowledgments

This work was supported in part:

- by NSF Cyber-Share grant HRD-0734825:
 – A Center for Sharing Cyberresources to Advance Science and Education;
- by Grant 1 T36 GM078000-01 from the National Institutes of Health:
 – Enhancement of Qualitative Science;
- by the Japan Advanced Institute of Science and Technology (JAIST) Int’l Joint Research Grant 2006-08.