Towards More Adequate Value-Added Teacher Assessments: How Intervals Can Help

Karen Villaverde1 and Olga Kosheleva2

1Department of Computer Science
New Mexico State University
Las Cruces, NM 88003, USA
kvillave@cs.nmsu.edu

2Department of Teacher Education
University of Texas at El Paso
El Paso, TX 79968, USA
olgak@utep.edu
1. Assessment is Important

- **Objective:** improve the efficiency of education.

- **Important:** to assess this efficiency, i.e., to describe this efficiency in quantitative terms.

- This is important on all education levels:
 - elementary schools
 - middle schools
 - high schools
 - universities

- Quantitative description is needed because
 - it allows natural comparison of different strategies of teaching and learning
 - and selection of the best strategy.
2. Need for Value-Added Assessment

• *Traditional assessment:* by the amount of knowledge that the students have after taking this class.

• *Example:* the average score of the students on some standardized test.

• *Comment:* this is actually how the quality of elementary/high school classes is now estimated in the US.

• *Limitation:* the class outcome depends
 – not only on the quality of the class, but
 – also on how prepared were the students when they started taking this class.

• *A more adequate assessment* should estimate the *added value* that the class brought to the students.
3. Current Approaches to Value-Added Assessment and their Limitations

- **Main idea:** subtracting the outcome from the input.
- **Example:** subtract
 - the average grade after the class (on the post-test)
 - the average grade on similar questions asked before the class (on the pre-test).
- **Comment:** the existing techniques take into account additional parameters influencing learning.
- **Main limitation:** actually, the amount of knowledge learned depends on the initial knowledge.
- **Additional limitation:** the assessment values come from grading, and are therefore somewhat imprecise.
4. Natural Idea: Using Interval Techniques

- **Reminder**: assessments are imprecise, we usually only know bounds on the actual amount of knowledge.
- **Conclusion**: it is natural to use interval techniques to process the corresponding values.
- **In this paper**: we describe how to use interval techniques.
- **Result**: interval techniques help us overcome both limitations of the existing value-added assessments.
5. Traditional Approach: Reminder

- **Reminder:** the post-test result y depends on the pre-test result x as $y \approx x + a$:

![Graph showing linear dependence]

- y increases linearly with x starting from a when $x = 0$.
- The value of y is approximately $x + a$ for $0 \leq x \leq 1$.
6. **Linear Dependence instead of Addition: Idea**

- **Problem:** the difference \(y - x \) actually changes with \(x \).
- **Natural next approximation:** \(y \approx m \cdot x + a \).
- **Observation:** for f-s \(f_1(x) = m_1 \cdot x + a_1 \) and \(f_2(x) = m_2 \cdot x + a_2 \) corr. to two teaching strategies, we may have
 - \(f_1(x_1) < f_2(x_1) \) for some \(x_1 \) and
 - \(f_1(x_2) > f_2(x_2) \) for some \(x_2 > x_1 \).
- **Interpretation:**
 - for weaker students, with prior knowledge \(x_1 < x_2 \), the second strategy is better, while
 - for stronger students, with prior knowledge \(x_2 > x_1 \), the first strategy is better.
- **Conclusion:** the new model provides a more nuanced comparison between different teaching strategies.
7. Ideal Case: Perfect Learning

- Ideal case: no matter what the original knowledge is, the resulting knowledge is perfect, $y \equiv 1$; then $m = 0$.

![Graph showing linear dependence]

y

\[
\begin{array}{c}
1 \\
0 \\
t \\
1 \\
x
\end{array}
\]
8. Example 2: Minimizing Failure Rate

- **Main idea:** to avoid failure, we concentrate on the students with low x; then $f(x) = mx + a$, with $m < 1$.

9. Example 3: Emphasis on Strong Students

- **Idea:** concentrate most of the effort on top students.
- **Result:** \(f(x) = m \cdot x + a \), with \(m > 1 \).
10. How to Determine the Coefficients m and a: Ideal Case of Crisp Estimates

- **We know:** pre-test grades x_1, \ldots, x_n and post-test grades y_1, \ldots, y_n.
- **Problem:** find m and a for which $y_i \approx m \cdot x_i + a$.
- **Least Squares method:** \[\sum_{i=1}^{n} (y_i - (m \cdot x_i + a))^2 \rightarrow \min_{m,a} \]
11. Case of Interval Uncertainty: Analysis

- **Fact:** the grade depends on assigning partial credit for partly correct solutions.
- **Known:** partial credit is somewhat subjective.
- **How to avoid this subjectivity:** letter grades such as A (corresponding to 90 to 100) are more objective.
- **Conclusion:** instead of the exact grade x_i, we have an interval $x = [\underline{x}_i, \overline{x}_i]$ of possible grades.
- **Value-added assessment:** describe the dependence $y = f(x)$ of the outcome grade y on the input grade x:
 - we consider all the students for whom the input grade is within the interval x;
 - then, $y = f(x)$ is the set of all possible outcome grades for these students.
12. Which Interval-to-Interval Functions Are Reasonable

- **Example:** suppose that
 - when the pre-test grade \(x \) is in \(x_1 = [80, 90] \), then the post-test grade \(y \) is in \(y_1 = f(x_1) = [85, 95] \);
 - when \(x \in x_2 = [90, 100] \), then \(y \in y_2 = f(x_2) = [92, 100] \).

- **Argument:** when \(x \in x_1 \cup x_2 \), then \(x \in x_1 \) or \(x \in x_2 \), so \(y \in y_1 \) or \(y \in y_2 \).

- **Conclusion:** \(f(x_1 \cup x_2) = f(x_1) \cup f(x_2) \).

- **Similar conclusion:** \(f(x) = \bigcup_{x \in x} f([x, x]) \).

- **Notation:** \([\underline{f}(x), \overline{f}(x)] \) def \(= f([x, x]) \).

- **Result:** all reasonable functions \(f(x) \) have the form \(f([x, x]) = [y, \overline{y}] \), where \(y \) def \(= \min_{x \in [x, x]} f(x) \); \(\overline{y} \) def \(= \max_{x \in [x, x]} f(x) \).
13. Case of Interval Uncertainty: Algorithm

- Idea: based on $[x_i, \bar{x}_i]$ and $[\underline{y}_i, \bar{y}_i]$, we use Least Squares to find values s.t. $\underline{y}_i \approx m \cdot \underline{x}_i + a$ and $\bar{y}_i \approx \bar{m} \cdot \bar{x}_i + \bar{a}$.
A. Appendix: Case of Fuzzy Uncertainty

- **Interval assumption:** we assumed that the interval \([x, \bar{x}]\) is guaranteed to contain the actual (unknown) value \(x\).
- **In reality:** the bounds that we know are “fuzzy”, i.e., they contain \(x\) only with some degree of confidence \(\alpha\).
- **Conclusion:** we have different intervals \([\underline{x}(\alpha), \bar{x}(\alpha)]\) corresponding to different degrees \(\alpha\).
- **Observation:** this is equivalent to knowing a fuzzy set with given \(\alpha\)-cuts \([\underline{x}(\alpha), \bar{x}(\alpha)]\).
- **Resulting algorithm:** for each \(\alpha\), we find the interval-values linear function
 \[
 [m(\alpha) \cdot x + a(\alpha), \bar{m}(\alpha) \cdot x + \bar{a}(\alpha)]
 \]
 corresponding to this \(\alpha\).
B. How to Use the Resulting Fuzzy Estimates to Compare Different Teaching Strategies

- From the input fuzzy grades X_1, \ldots, X_n, we extract α-cuts corresponding to their α-cuts $X_i(\alpha)$.

- We know input-output functions corresponding $f_j([x, \bar{x}])$ corresponding to different strategies j.

- We apply these functions to intervals $X_i(\alpha)$ and get fuzzy estimates $Y_{1,j}, \ldots, Y_{n,j}$ for post-test results.

- For each j, we apply the objective function to values $Y_{1,j}, \ldots, Y_{n,j}$.

- Thus, we get the fuzzy estimate V_j of the quality of the j-th strategy.

- We then use fuzzy optimization techniques to select the teaching strategy with the largest value V_j.
