Why Superellipsoids: A Probability-Based Explanation

Pedro Barragan Olague and Vladik Kreinovich

Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
pabarraganolague@miners.utep.edu
vladik@utep.edu
1. Outline

- In many practical situations, possible values of the deviation vector form (approximately) a super-ellipsoid.
- In this talk, we provide a theoretical explanation for this empirical fact.
- This explanation is based on the natural notion of scale-invariance.
2. Need to Describe Uncertainty Domains

- The intent of mass production is to produce gadgets with same values \((x_1, \ldots, x_n)\) of the characteristics \(x_i\).

- In reality, different gadgets have slightly different values \(\tilde{x}_i\) of these characteristics: \(\Delta x_i \overset{\text{def}}{=} \tilde{x}_i - x_i \neq 0\).

- For each of these characteristics \(x_i\), we usually have a tolerance bound \(\Delta_i\) for which \(|\Delta x_i| \leq \Delta_i\).

- Possible values of \(\Delta x_i\) form an interval \([-\Delta_i, \Delta_i]\).

- Thus, possible values of the deviation vector \(\Delta x = (\Delta x_1, \ldots, \Delta x_n)\) are in the box

 \([-\Delta_1, \Delta_1] \times \ldots \times [-\Delta_n, \Delta_n]\).

- In practice, not all \(\Delta x\) from this box are possible.

- It is desirable to describe the set \(S\) of all possible deviation vectors \(\Delta x\); \(S\) is called uncertainty domain.
3. Shall Not We Also Determine Probabilities?

- At first glance, it seems that we should be interested:
 - not only in finding out which deviation vectors Δx are possible and which are not,
 - but also in how frequent different possible vectors are.
- In other words, we should be interested in the probability distribution on this domain.
- In reality, however, it is not possible to find these probabilities.
- Indeed, the manufacturing process may slightly change (and often does change).
- After each such change, the tolerance intervals and the uncertainty domain remain largely unchanged.
- However, the probabilities change (often drastically).
4. **Empirical Shapes of Uncertainty Domains**

- In many practical cases, the uncertainty domain can be well approximated by a *super-ellipsoid*:
 \[
 \sum_{i=1}^{n} \left(\frac{|\Delta x_i|}{\sigma_i} \right)^p \leq C.
 \]

- Their approximation accuracy is higher than for other families with the same number of parameters.

- Super-ellipsoids are also actively used in image processing, to describe different components of an image.

- In this talk, we provide a theoretical explanation for this empirical phenomenon.
5. First Idea: Probabilistic Approach

- In reality, there is some probability distribution $\rho_i(\Delta x_i)$ for each of the random variables Δx_i.
- We have no reason to assume that positive or negative values of Δx_i are more probable.
- So, it makes sense to assume that they are equally probable.
- So, each distribution $\rho_i(\Delta x_i)$ is symmetric: $\rho_i(\Delta x_i) = \rho_i(|\Delta x_i|)$.
- Similarly, we have no reasons to believe that different deviations are statistically dependent.
- So, it makes sense to assume that random variables Δx_i are independent: $\rho(\Delta x) = \prod_{i=1}^{n} \rho_i(|\Delta x_i|)$.
- Usually, we consider a deviation vector possible if its probability exceed some t: $S_t \overset{\text{def}}{=} \{ \Delta x : \rho(\Delta x) \geq t \}$.
6. Second Idea: Scale Invariance

- Numerical values of the deviations Δx_i depend on the choice of a measuring unit.
- If we replace the original unit by a λ times smaller one, we get new numerical values $\Delta x'_i = \lambda \cdot \Delta x_i$.
- Since the physics remains the same, it makes sense to require that the uncertainty domains do not change.
- To be more precise, the pdf threshold t may change, but the family of such sets should remain unchanged.
- So, we require that $\{S'_t\}_t = \{S_t\}_t$, where S'_t corresponds to the re-scaled pdf $\rho'(\Delta x) = \text{const} \cdot \rho(\lambda \cdot \Delta)$.
- We will prove that under this scale-invariance, the corresponding sets S_t are exactly super-ellipsoids.
- Thus, we will get the desired explanation.
7. Definitions and the Main Result

- Let $n > 1$, and let $\rho(y) = (\rho_1(y_1), \ldots, \rho_n(y_n))$ be a tuple of positive symmetric smooth functions.

- For every $t > 0$, let us denote
 \[S_t(\rho) \overset{\text{def}}{=} \left\{ (y_1, \ldots, y_n) : \prod_{i=1}^n \rho_i(y_i) \geq t \right\}. \]

- We say that a tuple $\rho(y)$ is bounded if the set $S_t(\rho)$ is bounded for every t.

- For every $\lambda > 0$, by a λ-re-scaling of the tuple $\rho(x)$, we mean a tuple $\rho_\lambda(y)$, for which $\rho_{\lambda,i}(y_i) \overset{\text{def}}{=} \frac{1}{\lambda} \cdot \rho_i(\lambda \cdot y_i)$.

- We say that $\rho(y)$ is scale-invariant if for every $\lambda > 0$, re-scaling does not change $\{S_t\}_t$: $\{S_t(\rho)\}_t = \{S_t(\rho_\lambda)\}_t$.

- **Main Result.** *If the tuple $\rho(y)$ is bounded and scale-invariant, then each set $S_t(\rho)$ is a super-ellipsoid.*
8. Discussion

- Vice versa, it is easy to prove that:
 - each super-ellipsoid
 \[
 \left\{ y : \sum_{i=1}^{n} \left(\frac{|y_i|}{\sigma_i}\right)^p \leq C \right\}
 \]
 - can be represented as a set S_t for some bounded and scale-invariant distributions.
 - Namely, we can take $\rho_i(y_i) = \text{const} \cdot \exp \left(-\frac{|y_i|^p}{\sigma_i^p} \right)$.
 - Such probability distributions indeed occur: e.g., as probability distributions of measuring errors.
9. Proof

- For convenience, let us consider logarithms
 \[\psi_i(y_i) \overset{\text{def}}{=} - \log(\rho_i(y_i)) \].

- Let us take the negative logarithm of both sides of the inequality \(\prod_{i=1}^{n} \rho_i(y_i) \geq t \) that describes the set \(S_t(\rho) \).

- We then get an equivalent description \(\sum_{i=1}^{n} \psi_i(y_i) \leq c \), where we denoted \(c \overset{\text{def}}{=} - \log(t) \).

- In these terms, scale-invariance means that the corresponding family of sets is the same for all \(c \).

- In terms of the new functions \(\psi_i(y_i) \), scaling means
 \[\psi_{\lambda,i}(y_i) = - \ln(\rho_{\lambda,i}(y_i)) = - \log \left(\frac{1}{\lambda} \cdot \rho_i(\lambda \cdot y_i) \right) = \log(\lambda) - \log(\rho_i(\lambda \cdot y_i)) = \psi_i(\lambda \cdot y_i) + \log(\lambda) . \]
10. Proof (cont-d)

- So, scaling has the form \(\psi_{\lambda,i}(y_i) = \psi_i(\lambda \cdot y_i) + \log(\lambda) \).
- In these terms, the fact that scaling does not change the family of sets \(S_t \) implies that
 - if two tuples \((y_1, \ldots, y_n)\) and \((z_1, \ldots, z_n)\) always belong or not belong to the same sets \(S_t \),
 - i.e., if \(\sum_{i=1}^{n} \psi_i(y_i) = \sum_{i=1}^{n} \psi_i(z_i) \),
 - then the re-scaled functions should also have the same value of the sum: \(\sum_{i=1}^{n} \psi_{\lambda,i}(y_i) = \sum_{i=1}^{n} \psi_{\lambda,i}(z_i) \).
- Substituting \(\psi_{\lambda,i}(y_i) \) into this formula, we get
 \[
 \sum_{i=1}^{n} (\psi_i(\lambda \cdot y_i) + \log(\lambda)) = \sum_{i=1}^{n} (\psi_i(\lambda \cdot z_i) + \log(\lambda)), \text{ hence}
 \]
 \[
 \sum_{i=1}^{n} \psi_i(\lambda \cdot y_i) = \sum_{i=1}^{n} \psi_i(\lambda \cdot z_i).
 \]
11. Proof (cont-d)

- Thus, we have the following property:
 - if \(\sum_{i=1}^{n} \psi_i(y_i) = \sum_{i=1}^{n} \psi_i(z_i) \),
 - then \(\sum_{i=1}^{n} \psi_i(\lambda \cdot y_i) = \sum_{i=1}^{n} \psi_i(\lambda \cdot z_i) \).

- In particular, this property holds if we perform very small changes to only two \(y_i \)'s:
 \[
 y_a \rightarrow z_a = y_a + \delta_a, \quad y_b \rightarrow z_b = y_b + \delta_b.
 \]

- Here, \(\psi_a(y_a + \delta_a) = \psi_a(y_a) + \psi'_a(y_a) \cdot \delta_a + o(\delta) \).

- Similarly, \(\psi_b(y_b + \delta_b) = \psi_b(y_b) + \psi'_b(y_b) \cdot \delta_b + o(\delta) \).

- Thus, \(\sum_{i=1}^{n} \psi_i(z_i) = \sum_{i=1}^{n} \psi_i(y_i) + \psi'_a(y_a) \cdot \delta_a + \psi'_b(y_b) \cdot \delta_b + o(\delta) \).

- So, the original equality \(\sum_{i=1}^{n} \psi_i(y_i) = \sum_{i=1}^{n} \psi_i(z_i) \) takes the form
 \[
 \psi'_a(y_a) \cdot \delta_a + \psi'_b(y_b) \cdot \delta_b + o(\delta) = 0.
 \]
12. Proof (cont-d)

- Similarly, the equality \(\sum_{i=1}^{n} \psi_i(\lambda \cdot y_i) = \sum_{i=1}^{n} \psi_i(\lambda \cdot z_i) \) takes the form \(\psi'_a(\lambda \cdot y_a) \cdot \delta_a + \psi'_b(\lambda \cdot y_b) \cdot \delta_b + o(\delta) = 0 \).

- So, the scale-invariance condition takes the form:
 - if \(\psi'_a(y_a) \cdot \delta_a + \psi'_b(y_b) \cdot \delta_b + o(\delta) = 0 \),
 - then \(\psi'_a(\lambda \cdot y_a) \cdot \delta_a + \psi'_b(\lambda \cdot y_b) \cdot \delta_b + o(\delta) = 0 \).

- The 1st condition \(\iff -\frac{\delta_b}{\delta_a} = \frac{\psi'_a(y_a)}{\psi'_b(y_b)} + o(\delta) \).

- The 2nd condition \(\iff -\frac{\delta_b}{\delta_a} = \frac{\psi'_a(\lambda \cdot y_a)}{\psi'_b(\lambda \cdot y_b)} + o(\delta) \).

- So, \(\frac{\psi'_a(\lambda \cdot y_a)}{\psi'_b(\lambda \cdot y_b)} = \frac{\psi'_a(y_a)}{\psi'_b(y_b)} \Rightarrow \frac{\psi'_a(\lambda \cdot y_a)}{\psi'_a(y_a)} = \frac{\psi'_b(\lambda \cdot y_b)}{\psi'_b(y_b)} \).

- The left-hand side of this equality doesn’t depend on \(y_b \); thus, the right-hand side doesn’t depend on \(y_b \).
13. Proof (cont-d)

• Hence, this ratio depends only on λ. Let us denote this common ratio by $r(\lambda)$: $\psi'_a(\lambda \cdot y_a) = r(\lambda) \cdot \psi'_a(y_a)$.

• The derivative of a smooth function is always measurable.

• Thus, the function $r(\lambda)$ is also measurable, as a ratio of two measurable functions.

• Now, let us take arbitrary values $\lambda_1 > 0$ and $\lambda_2 > 0$.

• Then, we can re-scale first by λ_1, then by λ_1, or we can right away re-scale by $\lambda = \lambda_1 \cdot \lambda_2$.

• In the first case,

$$\psi'(\lambda_1 \cdot \lambda_2 \cdot y_a) = r(\lambda_1) \cdot \psi'(\lambda_2 \cdot y_a) = r(\lambda_1) \cdot r(\lambda_2) \cdot \psi'_a(y_a).$$

• In the 2nd case, $\psi'(\lambda_1 \cdot \lambda_2 \cdot y_a) = r(\lambda_1 \lambda_2) \cdot \psi'_a(y_a)$.

• So, we must have $r(\lambda_1 \cdot \lambda_2) = r(\lambda_1) \cdot r(\lambda_2)$.
14. Proof (cont-d)

- It is known that all measurable functions satisfying this property have the form \(r(\lambda) = \lambda^\beta \) for some \(\beta \).
- So, \(\psi'_a(\lambda \cdot y_a) = r(\lambda) \cdot \psi'_a(y_a) = \lambda^\beta \cdot \psi'_a(y_a) \).
- For \(\lambda = z \) and \(y_a = 1 \), we get \(\psi'_a(z) = \psi'_a(1) \cdot z^\beta \), i.e., that \(\psi'_a(y_a) = c_a \cdot y_a^\beta \) for some \(c_a \).
- Integrating, for \(\beta \neq -1 \), for \(y_a > 0 \), we get \(\psi_a(y_a) = k_a \cdot y_a^p + C_a \) for \(p = \beta + 1 \), \(k_a \overset{\text{def}}{=} \frac{c_a}{\beta + 1} \).
- Since \(\psi_i(y_i) \) is even, we get \(\psi_i(y_i) = k_i \cdot |y_i|^p + C_i \).
- So, the condition \(\sum_{i=1}^{n} \psi(y_i) \leq c \) takes the super-ellipsoid form \(\sum_{i=1}^{n} k_i \cdot |y_i|^p \leq c_0 \overset{\text{def}}{=} c - \sum_{i=1}^{n} C_i \).
- For this super-ellipsoid to be bounded, we need to have \(p > 0 \).
15. **Proof (final)**

- To complete the proof, it is sufficient to consider the case when $\beta = -1$.

- For $\beta = -1$, integration leads to
 \[\psi_i(y_i) = k_i \cdot \ln(|y_i|) + C_i. \]

- So the condition $\sum_{i=1}^{n} \psi_i(y_i) \leq c$ takes the form
 \[\sum_{i=1}^{n} k_i \cdot \ln(|y_i|) \leq c_0 \overset{\text{def}}{=} c - \sum_{i=1}^{n} C_i. \]

- Exponentiating both sides, we get $\prod_{i=1}^{n} |y_i|^{k_i} \leq \exp(C)$, for which the corresponding set S_t is unbounded.

- So, in the bounded cases, we always have a super-ellipsoid. The result is proven.
16. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721, and
- by an award from Prudential Foundation.