Why rectified linear neurons: a possible interval-based explanation

Jonathan Contreras, Martine Ceberio, and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
jmcontreras2@utep.edu, mceberio@utep.edu,
vladik@utep.edu
1. What are rectified linear neurons

- At present, the most efficient machine learning techniques are deep neural networks.
- In general, in a neural network, a signal repeatedly undergoes two types of transformations:
 - linear combination of inputs, and
 - a non-linear transformation of each value \(v \rightarrow s(v) \).
- The corresponding nonlinear function \(s(v) \) is called an activation function.
- In deep neural networks, most nonlinear layers use the function \(s(v) = \max(0, v) \).
- This function is called the rectified linear (ReLU) activation function.
- Let us show that what can be represented by the ReLU function can also be represented by any continuous 2-piece-wise linear function.
2. It Does Not Matter Which 2-Piece-Wise Linear Activation Function We Use

- We have two different linear functions
 \[s_1(x) = a_1 \cdot x + b_1 \text{ and } s_2(x) = a_2 \cdot x + b_2. \]
- We have a nonlinear continuous function \(s(x) \) for which, for every \(x \):
 - either \(s(x) = s_1(x) \)
 - or \(s(x) = s_2(x) \).
- We cannot have \(a_1 = a_2 \) – then we never have \(s_1(x) = s_2(x) \), so \(s(x) \) cannot switch from one to another.
- Thus, \(a_1 \neq a_2 \).
- Without losing generality, we can assume that \(a_1 < a_2 \).
- The only point where \(s(x) \) can switch is when \(s_1(x_0) = s_2(x_0) \), i.e.,
 \[y \overset{\text{def}}{=} a_1 \cdot x_0 + b_1 = a_2 \cdot x_0 + b_2, \]
 so
 \[x_0 = \frac{b_1 - b_2}{a_2 - a_1}. \]
3. It Does Not Matter (cont-d)

- Then, \(s_1(x) = y + a_1 \cdot (x - x_0) \) and \(s_2(x) = y + a_2 \cdot (x - x_0) \).
- So, \(s_1(x + x_0) = y + a_1 \cdot x \) and \(s_2(x + x_0) = y + a_2 \cdot x \).
- If \(s(x) = s_1(x) \) for \(x < x_0 \) and \(s(x) = s_2(x) \) for \(x > x_0 \), then
 \[
 s(x + x_0) - (y + a_1 \cdot x) = (a_2 - a_1) \cdot \max(x, 0), \quad \text{so}
 \max(x, 0) = \frac{1}{a_2 - a_1} \cdot s(x + x_0) - \frac{y}{a_2 - a_1} - \frac{a_1}{a_2 - a_1} \cdot x.
 \]
- So, by using a single neuron and linear transformations, we can get ReLU.
- Similarly, by using ReLU, we can get this neuron as
 \[
 s(x) = a_1 \cdot x + b_1 + (a_2 - a_1) \cdot \max(0, x - x_0).
 \]
- Similar equivalence occurs if \(s(x) = s_2(x) \) for \(x < x_0 \) and \(s(x) = s_1(x) \) for \(x > x_0 \).
4. Why rectified linear neurons?

- Empirically, rectified linear activation functions work the best.
- There are some partial explanations for this empirical success.
- However, none of these explanations is fully convincing.
- So yet another explanation is always welcome.
- In this talk, we analyze this why-question from the viewpoint of uncertainty propagation.
- We show that some reasonable uncertainty-related arguments indeed lead to a possible (partial) explanation.
5. Need to take interval uncertainty into account

- The activation function transforms the input v into the output
 \[y = s(v) \].

- The input v comes:
 - either directly from measurements,
 - or from processing measurement results.

- Measurements are never absolutely accurate.

- The measurement result \tilde{v} is, in general, different from the actual (unknown) value of the quantity v.

- In many practical situations, all we know about the measurement error $\Delta v \overset{\text{def}}{=} \tilde{v} - v$ is the upper bound Δ on its absolute value:
 \[|\tilde{v} - v| \leq \Delta. \]

- In this case, possible values of v form an interval $[\tilde{v} - \Delta, \tilde{v} + \Delta]$.
6. First natural requirement

- A first natural requirement is that the output y should not be too much affected by inaccuracy with which we know the input.
- Ideally, this inaccuracy should not increase after data processing, i.e., we should have
 \[|s(\tilde{v}) - s(v)| \leq |\tilde{v} - v|. \]
- In mathematical terms, this means that the function $s(v)$ should be 1-Lipschitz.
- So its derivative (or generalized derivative) should be limited by 1:
 \[|s'(v)| \leq 1. \]
7. Second natural requirement: first try

- On the other hand, we do not want to lose information about the signal.

- So we must be able to reconstruct the input signal from the output as accurately as possible.

- This idea can be naturally described as

\[|\tilde{v} - v| \leq |s(\tilde{v}) - s(v)|. \]

- Together with the first requirement, this means that

\[|\tilde{v} - v| = |s(\tilde{v}) - s(v)|. \]

- Taking into account that we want to uniquely reconstruct \(v \) from \(s(v) \), this implies that either \(s(v) = v + c \) or \(s(v) = -v + c \).

- However, we wanted the function \(s(v) \) to be nonlinear, since otherwise we will only be able to represent linear dependencies.
8. Proof

- Indeed, we have $|s(1) - s(0)| = 1$.
- This means that we have either $s(1) - s(0) = 1$ or $s(1) - s(0) = -1$.
- Let us show that in the first case, we have $s(v) - s(0) = v$ for all v.
- Indeed, we have $s(v) - s(1) = \pm(v - 1)$ and $s(v) - s(0) = \pm v$.
- Let us show, by contradiction, that we cannot have $s(v) - s(0) = -v \neq v$.
- Indeed, then $s(v) - s(1) = (s(v) - s(0)) - (s(1) - s(0)) = -v - 1$.
- On the other hand, $s(v) - s(1) = \pm(v - 1)$, so $-v - 1 = \pm(v - 1)$.
- If $-v - 1 = v - 1$, then $-v = v$ and $v = 0$. In this case, $-v = v$.
- If $-v - 1 = -v + 1$, then we get $-1 = 1$ – a contradiction.
- So, indeed, $s(v) - s(0) = v$, so $s(v) = v + c$, where $c \overset{\text{def}}{=} s(0)$.
- Similarly, if $s(1) - s(0) = -1$, then $s(v) = -v + c$.
9. Second natural requirement made realistic

- We showed that we cannot accurately reconstruct the input v from $s(v)$.
- So, a natural idea is to use two activation functions $s_1(v)$ and $s_2(v)$ so that:
 - for each v,
 - we can accurately reconstruct the signal from at least one of the two outputs $s_i(v)$.
10. What we can conclude

- A natural conclusion is that for (almost) all values v, we must have:
 - either $|s_1'(v)| = 1$
 - or $|s_2'(v)| = 1$.

- In other words, the real line – the set of all possible values v – is divided into two subsets:
 - on one of them $s_1(v) = \pm v + c_1$,
 - on another one $s_2(v) = \pm v + c_2$.

11. **Third natural requirement**

- Many real-life dependencies are linear.
- The simplest linear function is \(f(v) = v \).
- It is desirable to require that \(f(v) = v \) can be represented as a linear combination of the two activation functions, i.e., that:

\[
v = c_0 + c_1 \cdot s_1(v) + c_2 \cdot s_2(v).
\]
12. What we can now conclude

- For values v for which $s_1(v) = \pm v + c_1$, we conclude that
 \[s_2(v) = c_2^{-1} \cdot (v - c_0 - c_1 \cdot s_1(v)) \].

- Thus, for these v, the function $s_2(v)$ is linear.

- Similarly, for remaining values v – for which $s_2(v) = \pm v + c_2$ – we can conclude that the function $s_1(v)$ is linear.

- Thus, both activation functions $s_1(v)$ and $s_2(v)$ are piecewise linear.

- This exactly what we wanted to explain.
13. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science);
- HRD-1834620 and HRD-2034030 (CAHSI Includes).

It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.
14. Bibliography
