Kinematic Metric Spaces Under Interval Uncertainty: Towards an Adequate Definition

Vladik Kreinovich1, Olga Kosheleva1, and Victor Selivanov2

1University of Texas at El Paso
500 W. University
El Paso, Texas 79968, USA
vladik@utep.edu, olgak@utep.edu

2A. P. Ershov Institute of Informatics Systems
Novosibirsk, Russia, vseliv@iis.nsk.su
1. What is a kinematic metric: physical introduction

- In the physical space, we can define the distance $d(a, b)$ between two points as the length of the shortest possible path between them.
- Thus defined distance is symmetric ($d(a, b) = d(b, a)$) and satisfies the usual triangle inequality $d(a, c) \leq d(a, b) + d(b, c)$.
- The mathematical notion of a metric is a natural generalization of this physical notion.
- From the viewpoint of space-time:
 - physical space corresponds to the situation when
 - we take space-time points (“events”) $(a, t_0), (b, t_0)$, etc. corresponding to the same moment of time t_0.
- In relativity theory, such events cannot causally influence each other.
- Some events a can causally influence events b.
- We will denote this strict order – i.e., irreflexive transitive – relation by $a < b$.
2. What is a kinematic metric (cont-d)

- The causal influence is implemented by a particle or particles whose trajectories start at a and end up at b.
- For each such trajectory, we can measure the proper time of the corresponding particle.
- In principle, particles can travel as close to the speed of light as possible.
- In this case, the proper time can be as close to 0 as possible.
- So the *smallest* proper time over all trajectories is always 0.
- Interestingly, there is the *largest* proper time $\tau(a, b)$ – which corresponds to inertial motion.
- The corresponding function $\tau(a, b)$ – defined only when $a < b$ – satisfies the “anti-triangle” inequality $\tau(a, c) \geq \tau(a, b) + \tau(b, c)$.
3. What is a kinematic metric (cont-d)

- This inequality describes the known *twins paradox* of relativity theory:
 - when a twin brother who traveled to the stars comes back to Earth,
 - he will be younger than his twin who stayed on Earth.

- Indeed:
 - the biological age of the stay-home brother is $\tau(a, c)$, while
 - the biological age of the astronaut brother is $\tau(a, b) + \tau(b, c)$, where b is the moment when the brother reached a faraway star.

- A natural generalization of this function is a notion of *kinematic metric*.
4. Kinematic metric: definition

- Let \((X, <)\) be an ordered set.
- A function \(\tau(a, b)\) – defined for all pairs for which \(a < b\) – is called a \textit{kinematic metric} if:

 - all its values are non-negative and
 - it satisfies the following “anti-triangle” inequality:

 \[\tau(a, c) \geq \tau(a, b) + \tau(b, c). \]
5. Need for interval uncertainty

- All information about the values of a physical quantity \(v \) – including the values of the kinematic metric – comes from measurements.
- Measurements are never absolutely accurate.
- So the measurement result \(\tilde{v} \) is, in general, different from the actual (unknown) value \(v \): there is a measurement error \(\Delta v \overset{\text{def}}{=} \tilde{v} - v \).
- Often, the only information that we have about the measurement error is an upper bound \(\Delta \) on its absolute value.
- In this case, the only information that we have about the actual value \(v \) is that this value belongs to the interval

\[
[v, \bar{v}] \overset{\text{def}}{=} [\tilde{v} - \Delta, \tilde{v} + \Delta].
\]
6. Natural question

- Suppose that we have, for all pairs \(a < b \), intervals \([\tau(a, b), \bar{\tau}(a, b)]\), with \(\tau(a, b) \geq 0 \), obtained from measurement.

- Here, \([\tau(a, b), \bar{\tau}(a, b)] = [\tilde{\tau}(a, b) - \Delta(a, b), \tilde{\tau}(a, b) + \Delta(a, b)]\).

- If all the upper bounds \(\Delta(a, b) \) are correct, then there is a kinematic metric \(\tau(a, b) \) for which \(\tau(a, b) \in [\tau(a, b), \bar{\tau}(a, b)] \) for all \(a < b \).

- However, if we – as happens – underestimated the measurement errors, we may not have such a function.

- So, a natural question is: what is the condition on the intervals \([\tau(a, b), \bar{\tau}(a, b)]\) under which such a function \(\tau(a, b) \) exists?
7. A seemingly natural idea does not work

- Anti-triangle inequality implies that
 \[\overline{\tau}(a, c) \geq \tau(a, b) + \tau(b, c) \text{ for all } a < b < c. \]

- So, it may seem that this inequality is the right condition for the existence of the desired kinematic metric \(\tau(a, b) \).

- However, this inequality does not guarantee the existence of \(\tau(a, b) \).

- For example, for \(X = \{a_1 < a_2 < a_3 < a_4\} \) and \([\overline{\tau}(a_i, a_j), \overline{\tau}(a_i, a_j)] = [1, 2] \) for all \(i < j \):
 - this inequality is satisfied, but
 - the desired function \(\tau(a, b) \) is not possible.

- Indeed, if \(\tau(a, b) \) existed, we would have:
 \[2 \geq \tau(a_1, a_4) \geq \tau(a_1, a_2) + \tau(a_2, a_3) + \tau(a_3, a_4) \geq 3, \text{ i.e., } 2 \geq 3. \]
8. Main result

- For an interval-valued function \([\underline{\tau}(a, b), \bar{\tau}(a, b)]\) defined for all \(a < b\), the following two conditions are equivalent to each other:

 - there exists a kinematic metric \(\tau(a, b)\) for which always
 \[
 \tau(a, b) \in [\underline{\tau}(a, b), \bar{\tau}(a, b)];
 \]

 - we have \(\bar{\tau}(a_1, a_n) \geq \sum_{i=1}^{n-1} \tau(a_i, a_{i+1})\) for all sequences
 \[
 a_1 < \ldots < a_n.
 \]
9. Proof

- If $\tau(a, b)$ exists, then this inequality is clearly satisfied.

- Indeed, it follows from the anti-triangle inequality

$$\tau(a_1, a_n) \geq \sum_{i=1}^{n-1} \tau(a_i, a_{i+1}) \geq \sum_{i=1}^{n-1} \tau(a_i, a_{i+1}).$$

- Vice versa, suppose that the above condition is satisfied.

- Then, we can take $\tau(a, b) = \sup \left\{ \sum_{i=1}^{n-1} \tau(a_i, a_{i+1}) \right\}.$

- Here, the supremum is taken over all the chains

$$a = a_1 < a_2 < \ldots < a_n = b$$

that connect a and b.

- One can easily prove that thus defined function satisfies the anti-triangle inequality.

- By taking a chain $a_1 = a < a_2 = b$, we get $\tau(a, b) \geq \tau(a, b)$.
10. Proof (cont-d)

- From the above inequality, for each chain, we get

\[\bar{\tau}(a, b) \geq \sum_{i=1}^{n-1} \tau(a_i, a_{i+1}). \]

- Since \(\bar{\tau}(a, b) \) is greater than or equal to each sum, it is greater than or equal to their supremum:

\[\bar{\tau}(a, b) \geq \sup \left\{ \sum_{i=1}^{n-1} \tau(a_i, a_{i+1}) \right\}. \]

- Thus, \(\underline{\tau}(a, b) \leq \tau(a, b) \leq \bar{\tau}(a, b) \), i.e.:

\[\tau(a, b) \in [\underline{\tau}(a, b), \bar{\tau}(a, b)]. \]
11. Comment

• We need the above condition for all natural numbers \(n \):

\[
\tau(a_1, a_n) \geq \sum_{i=1}^{n-1} \tau(a_i, a_{i+1}) \text{ for all sequences } a_1 < \ldots < a_n.
\]

• If we only require it only for \(n \leq n_0 \), this does not guarantee the existence of \(\tau(a, b) \).

• Example:

 • \(X = \{a_1 < \ldots < a_{n_0+1}\} \) and

 • \([\tau(a_i, a_j), \tau(a_i, a_j)] = [1, n_0 - 1]\) for all \(i < j \).

• Indeed, if \(\tau(a, b) \) existed, we would have

\[
n_0 - 1 \geq \tau(a_1, a_{n_0+1}) \geq \tau(a_1, a_2) + \ldots + \tau(a_{n_0}, a_{n_0+1}) \geq n_0,
\]

 i.e., \(n_0 - 1 \geq n_0 \).
12. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science);

- HRD-1834620 and HRD-2034030 (CAHSI Includes).

It was also supported by the program of the development of the Scientific-Educational Mathematical Center of Volga Federal District No. 075-02-2020-1478.
13. Bibliography
