From p-Boxes to p-Ellipsoids: Towards an Optimal Representation of Imprecise Probabilities

Konstantin K. Semenov1 and Vladik Kreinovich2

1Saint-Petersburg State Polytechnical University
29, Polytechnicheskaya str.
Saint-Petersburg, 195251, Russia, semenov.k.k@gmail.com

2Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA, vladik@utep.edu
1. Probabilistic Information Is Important

- It is very important to take into account information about the probabilities of different possible values.
- This is especially true in many engineering applications, when we have a long history of similar situations.
- There are several mathematically equivalent ways to represent information about a random variable X:
 - $cdf \ F(x) \overset{\text{def}}{=} \text{Prob}(x \leq X)$;
 - $pdf \ \rho(x) \overset{\text{def}}{=} \lim_{\Delta x \to 0} \frac{\text{Prob}(x \leq X \leq x + \Delta x)}{\Delta x}$;
 - $moments \ M_k \overset{\text{def}}{=} E[X^k] = \int x^k \cdot \rho(x) \, dx$; instead of M_2, we can describe the variance $V = M_2 - M_1^2$;
 - $characteristic \ function \ E[\exp(i \cdot \omega \cdot X)] = \int \exp(i \cdot \omega \cdot x) \cdot \rho(x) \, dx$;
 - expected values $E[u(X)] = \int u(x) \cdot \rho(x) \, dx$ of the utility functions $u(x)$ that describe user preferences.
2. Need to Take Imprecision into Account

- In practice, we rarely have full knowledge of the probability distribution.

- In terms of cdf, this means that we only know the bounds uncertainty means that \([F(x), \bar{F}(x)]\) (p-box).

- Instead of the exact value \(\rho(x)\) of the pdf, for each \(x\), we know an interval \([\underline{\rho}(x), \bar{\rho}(x)]\) of possible values.

- Instead of the exact values of the moments \(M_k\), we know intervals \([\underline{M}_k, \bar{M}_k]\) of possible values, etc.

- When we have the exact knowledge of the probabilities, all representations are mathematically equivalent.

- However, in the presence of uncertainty, these representations are no longer equivalent.
3. Taking Imprecision into Account (cont-d)

- Let us show that in the presence of uncertainty, different representations are no longer equivalent.

- Example: if we know the bounds ρ and $\bar{\rho}$ on $\rho(x)$ on $[x^-, x^+]$, we can deduce bounds on $\overline{F}(x)$:

$$\underline{F}(x) = (x - x^-) \cdot \rho \text{ and } \overline{F}(x) = (x - x^-) \cdot \bar{\rho}.$$

- However, these bounds contain a distribution for which:
 - first the cdf $F(x)$ is equal to $\underline{F}(x)$ and
 - then at some point $x_0 \in [x^-, x^+]$, it jumps to $\overline{F}(x)$.

- For this distribution, the probability density $\rho(x)$ is infinite at $x = x_0$, hence $\rho(x_0) = \infty \not\in [\rho, \bar{\rho}]$.

- So which of these non-equivalent representations of imprecise probability should we use?
4. Which Representation Is the Best?

- One of the main objectives of data processing is to make decisions.
- Standard approach: select the action a with the largest expected utility $E[u_a(x)]$.
- In many cases, the utility function $u_a(x)$ is smooth:
 \[u_a(x) \approx c_0 + c_1 \cdot (x - x_0) + c_2 \cdot (x - x_0)^2. \]
- So, to compute $E[u_a(x)]$, it’s sufficient to know M_k.
- Sometimes, utility function is discontinuous: e.g., there is a fine is pollution is beyond a threshold x_0.
- When $u = u^−$ for $x < x_0$ and $u = u^+$ = 1 for $x \geq x_0$, then $E[u_a(x)] = u^− + (u^+ - u^−) \cdot F(x_0)$.
- So, depending on the application, different representation are optimal: moments M_k or cdf $F(x)$.
5. Analysis of the Problem

- **Reminder:** we can use several moments M_1, M_2, \ldots, or several values $F(x_1)$, $F(x_2)$, \ldots, of cdf $F(x)$.

- In each case, we use several values v_1, \ldots, v_n to describe a distribution.

- In general, all formulas are linear in $\rho(x)$, so relation between different representations is linear:

$$v_i \rightarrow v'_i = a_i + \sum_{j=1}^{n} a_{ij} \cdot v_j.$$

- Imprecision is usually represented by bounds \underline{v}_i and \overline{v}_i; so, possible values of $v = (v_1, \ldots, v_n)$ form a box

$$[\underline{v}_1, \overline{v}_1] \times \ldots \times [\underline{v}_n, \overline{v}_n].$$

- Alas, in general, a linear transformation transforms a box into a parallelepiped – and not into a box.
6. What Is Needed

- **Reminder:** what was a box in one representation becomes a different objects in another one.

- So, different box representations of imprecise probability are *not* equivalent.

- We therefore need a family F of sets which remains of the same type after a linear transformation T:

 $$\text{if } V \in F \text{ then } T(V) \overset{\text{def}}{=} \{T(v) : v \in V\} \in F.$$

- In many situations (e.g., in automatic control), when we need to make decision very fast.

- In general, the more parameters we need to process, the longer our computations.

- It is therefore desirable to select a family F with the smallest possible number of parameters.
7. Main Result and Its Corollary

Main Result:

- Let F be a linear-invariant r-parametric family of connected bounded closed domains from \mathbb{R}^n.

- Then $r \geq \frac{n(n + 3)}{2}$; and if $r = \frac{n(n + 3)}{2}$, then:
 - either F is the family of all ellipsoids E,
 - or, for some $\lambda \in (0, 1)$, F is the family of all sets $E - \lambda \cdot E$.

Discussion:

- If we restrict ourselves to convex sets (or only to simply connected sets), we get ellipsoids only.

- So, to describe imprecision, we should use p-ellipsoids: ellipsoid-shaped regions in the space of all cdf f-s $F(x)$.
8. Towards Auxiliary Result: What Does “Optimal” Mean?

Let \mathcal{A} be a class of families of sets, and let G be a group of transformations defined on \mathcal{A}.

- By an *optimality criterion*, we mean a *pre-ordering* (i.e., a transitive reflexive relation) \preceq on the class \mathcal{A}.
- An optimality criterion is *G-invariant* if for all $g \in G$, and for all $B, B' \in \mathcal{A}$, $B \preceq B'$ implies $g(B) \preceq g(B')$.
- An optimality criterion is *final* if there exists exactly one $B_{opt} \in \mathcal{A}$ for which $B \preceq B_{opt}$ for all $B \neq B_{opt}$.

Explanation:

- If there are *no* optimal B_{opt}, the criterion is useless.
- If there are *several* optimal $B_{opt} \neq B'_{opt}$, we can use this non-uniqueness to optimize something else.
- So, if $B_{opt} \neq B'_{opt}$, the original criterion is *not* final.
9. Auxiliary Result

Result:

- Let \mathcal{A} be the family of all r-parametric families of connected bounded closed domains from \mathbb{R}^n.
- Let \preceq be a linear-invariant final opt. criterion on \mathcal{A}.
- Then $r \geq \frac{n(n + 3)}{2}$; and if $r = \frac{n(n + 3)}{2}$, then:
 - either the optimal family F_{opt} is the family of all ellipsoids E,
 - or, for some $\lambda \in (0, 1)$, F_{opt} is the family of all sets $E - \lambda \cdot E$.

Discussion:

- If we restrict ourselves to convex sets (or only to simply connected sets), we get ellipsoids only.
- So, to describe imprecision, we should use p-ellipsoids.
10. Ellipsoids Are Better Than Boxes: Examples

• Several families of sets have been proposed to describe uncertainty: ellipsoids, boxes, polytopes, etc.

• Experiments show that in many practical situations with uncertainty, ellipsoids lead to the best results.

• Example: linear programming – finding min or max of a linear function under linear inequalities.

• The traditional simplex method sometimes requires unfeasibly many ($\approx 2^n$) computational steps.

• Ellipsoids lead to polynomial-time algorithms for linear programming (Khachiyan, Karmarkar).

• Ellipsoids are also empirically better in many pattern recognition problems.
11. Ellipsoids Lead to Faster Computations

- In many practical situations, we need to estimate the value of a statistical characteristic $S(v_1, \ldots, v_n)$.
- In the case of imprecision, we only know the range V of possible values of v.
- Different distributions $v \in V$ lead, in general, to different values of $S(v)$.
- It is therefore desirable to compute the range $S(V) \overset{\text{def}}{=} \{S(v) : v \in V\}$ of possible values of $S(v)$.
- Often, we have a reasonably good knowledge about the probability distribution.
- So, we expand the dependence $S(v)$ around an estimate \tilde{v} and keep only quadratic terms in $\Delta v \overset{\text{def}}{=} v - \tilde{v}$:

$$S(v) = s_0 + \sum_{i=1}^{n} s_i \cdot v_i + \sum_{i=1}^{n} \sum_{j=1}^{n} s_{ij} \cdot v_i \cdot v_j.$$
12. Ellipsoids Lead to Faster Computations (cont-d)

- *Reminder:* we need to estimate the range of the following function over the set V describing imprecision:

$$S(v) = s_0 + \sum_{i=1}^{n} s_i \cdot v_i + \sum_{i=1}^{n} \sum_{j=1}^{n} s_{ij} \cdot v_i \cdot v_j.$$

- Computing the range of a quadratic function over a box is, in general, *NP-hard*.

- This means, crudely speaking, that no feasible algorithm can always solve this range-comp. problem.

- In contrast, Lagrange multipliers lead to *feasible* computation of quadratic $S(v)$ over an *ellipsoid*.

- So, ellipsoids do lead to faster computations.
13. Ellipsoids Are in Good Agreement with Additional Probabilistic Information

- Often, we have a probability distribution on the set V of possible probability distributions.
- There are usually many different reasons for the imprecision with which we know v.
- Due to the Central Limit Theorem, we conclude that the distribution is close to Gaussian.
- Strictly speaking, a Gaussian distribution has positive density $\rho_V(v) > 0$ for all possible vectors $v \in \mathbb{R}^n$.
- In practice, we dismiss v for which the probability is too small $\rho_V(v) < \rho_0$, and keep $V = \{v : \rho_V(v) \geq \rho_0\}$.
- For a Gaussian distribution, the inequality $\rho_V(v) \geq \rho_0$ describes an ellipsoid.
14. How to Extract and p-Ellipsoid from Data

- A p-box can be extracted by using Kolmogorov-Smirnov criterion \(\max |F(x) - F_n(x)| \leq \Delta \) w/given conf. level,
 \[
 F_n(x) \overset{\text{def}}{=} \frac{\#\{i : x_i \leq x\}}{n}.
 \]

- Thus, \(F(x) \in [F_n(x) - \Delta, F_n(x) + \Delta] \).

- For p-ellipsoids, we can similarly use Cramer-von Mises \(\omega^2 \) criterion for goodness of fit:
 \[
 \int (F(x) - F_n(x))^2 dF(x) \leq \Delta.
 \]

- In geometric terms, this quadratic inequality describes an ellipsoid, so we get the desired p-ellipsoid.

- In practice, 95% confidence intervals are normally used.
15. If we Reconstruct a p-Ellipsoid from Data Instead of a p-Box, We Get Better Estimates

We compared the interval of possible values for the mean computed based on p-box and p-ellipsoid.

- We produced a set \(x_i, i = 1, 2, \ldots, n \) of random variables of the same bounded distribution (for example, which is uniform on \([a, b]\)) for some \(n \).

- We reconstructed a p-box and a p-ellipsoid from this data and estimate confidence intervals \(I_{KS} \) and \(I_{CvM} \) for mean by solving optimization problems.

Note: To get correct results we must take into account that all \(x_i \in [a, b] \).

- We compared the width \(w_{KS} \) of \(I_{KS} \) and the width \(w_{CvM} \) of \(I_{CvM} \) with the width \(w_t \) of the classical Student confidence interval.

- We repeated experiment \(N = 10^6 \) times for different \(n \).
16. If we Reconstruct a p-Ellipsoid from Data Instead of a p-Box, We Get Better Estimates (cont-d)

- Results are in the table below.

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{w_{KS}}{w_t}$</td>
<td>1.46</td>
<td>2.05</td>
<td>2.17</td>
<td>2.25</td>
<td>1.88</td>
</tr>
<tr>
<td>$\frac{w_{CvM}}{w_t}$</td>
<td>1.21</td>
<td>1.60</td>
<td>1.65</td>
<td>1.67</td>
<td>1.49</td>
</tr>
</tbody>
</table>

- Conclusion: estimates w_{CvM} based on p-ellipsoids are narrower.
17. If we Reconstruct a p-Ellipsoid from Data Instead of a p-Box, We Get Better Estimates

- Here is the example of CDFs, which are corresponding to the limit values of I_{KS} and I_{CvM}.
18. Acknowledgment

This work was supported in part:

- by the National Science Foundation grants HRD-0734825, HRD-1242122, and DUE-0926721,
- by Grant 1 T36 GM078000-01 from the National Institutes of Health, and
- by a grant on F-transforms from the Office of Naval Research.

The authors would like to thank:

- all participants of the 15th GAMM – IMACS Int’l Symposium on Scientific Computing, Computer Arithmetic, and Verified Numerical Computation SCAN’2012 (Novosibirsk, Russia, September 23–29, 2012), especially Sergey Shary, for inspiring discussions,
- the anonymous referees for valuable suggestions.