From Interval Computations to Constraint-Related Set Computations: Towards Faster Estimation of Statistics and ODEs under Interval and p-Box Uncertainty

Martine Ceberio, Vladik Kreinovich, and Andrzej Pownuk
University of Texas, El Paso, Texas 79968, USA
emails mceberio@cs.utep.edu, vladik@utep.edu
1. Outline

- *Interval computations*: at each intermediate stage of the computation, we have intervals of possible values.

- In our previous papers, we proposed an extension of this technique to *set computations*.

- *Set computations*: on each stage,
 - in addition to *intervals* of possible values of the quantities,
 - we also keep *sets* of possible values of pairs (triples, etc.).

- In this paper, we consider several practical problems:
 - estimating statistics (variance, correlation, etc.),
 - solving ordinary differential equations (ODEs).

- For these problems, the new formalism enables us to find estimates in feasible (polynomial) time.
2. Need for Data Processing

- **Situation:** We are interested in the value of a physical quantity y.

- **Problem:** often, y that is difficult or impossible to measure directly.

- **Examples:** distance to a star, amount of oil in a well.

- **Solution:**

 - find easier-to-measure quantities x_1, \ldots, x_n which are related to y by a known relation $y = f(x_1, \ldots, x_n)$;

 - measure or estimate the values of the quantities x_1, \ldots, x_n; results are $\tilde{x}_i \approx x_i$;

 - estimate y as $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$.

- Computing \tilde{y} is called *data processing*.

- **Comment:** algorithm f can be complex, e.g., solving ODEs.
3. Measurement Uncertainty

- **Measurement errors**: measurement are never 100% accurate, so $\Delta x_i \, \overset{\text{def}}{=} \, \tilde{x}_i - x_i \neq 0$.

- **Result**: the estimate $\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n)$ is, in general, different from the actual value $y = f(x_1, \ldots, x_n)$.

- **Problem**: based on the information about Δx_i, estimate the error $\Delta y \, \overset{\text{def}}{=} \, \tilde{y} - y$.

- **What do we know about Δx_i**: the manufacturer of the measuring instrument (MI) supplies an upper bound Δ_i:

$$|\Delta x_i| \leq \Delta_i.$$

- **Interval uncertainty**: $x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i]$.
4. Measurement Uncertainty: from Probabilities to Intervals

- **Reminder**: we know that $\Delta x_i \in [-\Delta_i, \Delta_i]$.

- **Probabilistic uncertainty**: often, we also know the probability of different values $\Delta x_i \in [\Delta_i, \Delta_i]$.

- We can determine these probabilities by using standard measuring instruments.

- Two cases when this is not done:
 - cutting edge measurements (e.g., Hubble telescope);
 - manufacturing.

- In these cases, we have a purely interval uncertainty.
5. **Interval Part: Outline**

- We start by recalling the basic techniques of interval computations and their drawbacks.
- Then we will describe the new set computation techniques.
- We describe a class of problems for which these techniques are efficient.
- Finally, we talk about how we can extend these techniques to other types of uncertainty.
- Example of other types of uncertainty: classes of probability distributions.
6. Straightforward Interval Computations: Main Idea

- **Parsing**: inside the computer, every algorithm consists of elementary operations (+, −, ·, min, max, etc.).

- **Interval arithmetic**: for each elementary operation \(f(a, b) \),
 - if we know the intervals \(a \) and \(b \),
 - we can compute the exact range \(f(a, b) \):
 \[
 [a, \bar{a}] + [b, \bar{b}] = [a+b, \bar{a}+\bar{b}]; \quad [a, \bar{a}] - [b, \bar{b}] = [a-b, \bar{a}-\bar{b}];
 [a, \bar{a}] \cdot [b, \bar{b}] = [\min(a \cdot b, a \cdot \bar{b}, \bar{a} \cdot b, \bar{a} \cdot \bar{b}), \max(a \cdot b, a \cdot \bar{b}, \bar{a} \cdot b, \bar{a} \cdot \bar{b})];
 \frac{1}{[a, \bar{a}]} = \left[\frac{1}{\bar{a}}, \frac{1}{a} \right] \quad \text{if } 0 \not\in [a, \bar{a}]; \quad \frac{[a, \bar{a}]}{[b, \bar{b}]} = [a, \bar{a}] \cdot \frac{1}{[b, \bar{b}]}.
 \]

- **Main idea**: replace each elementary operation in \(f \) by the corresponding operation of interval arithmetic.

- **Known**: we get an enclosure \(Y \supseteq y \) for the desired range.
7. Discussion

- **Fact:** not every real number can be exactly implemented in a computer, so:
 - after implementing an operation of interval arithmetic,
 - we must enclose the result \([r^-, r^+]\) in a computer-representable interval:
 * round-off \(r^-\) to a smaller computer-representable value \(\underline{r}\), and
 * round-off \(r^+\) to a larger computer-representable value \(\overline{r}\).

- **Computation time:** increase by a factor of \(\leq 4\).

- **Computing exact range:** NP-hard.

- **Conclusion:** excess width is inevitable.

- **More accurate techniques exist:** centered form, bisection, etc.
8. Reason for Excess Width

• **Main reason:**
 - intermediate results are dependent on each other;
 - straightforward interval computations ignore this.

• **Example:** the range of \(f(x_1) = x_1 - x_1^2 \) over \(x_1 = [0, 1] \) is \(y = [0, 0.25] \).

• **Parsing:**
 - we first compute \(x_2 := x_1^2 \),
 - then subtract \(x_2 \) from \(x_1 \).

• **Straightforward interval computations:**
 - compute \(r = [0, 1]^2 = [0, 1] \),
 - then \(x_1 - x_2 = [0, 1] - [0, 1] = [-1, 1] \).

• **Illustration:** the values of \(x_1 \) and \(x_2 \) are not independent: \(x_2 \) is uniquely determined by \(x_1 \), as \(x_2 = x_1^2 \).
9. **Constraint-Based Set Computations**

- **Main idea** (Shary): at every computation stage, we also keep sets:
 - sets x_{ij} of possible values of pairs (x_i, x_j);
 - if needed, sets x_{ijk} of possible values of triples (x_i, x_j, x_k).

- **Example:**
 - in addition to intervals $x_1 = x_2 = [0, 1]$, we also generate the set $x_{12} = \{(x_1, x_1^2) | x_1 \in [0, 1]\}$.

- **Result:** Then, the desired range is computed as the range of $x_1 - x_2$ over this set – which is exactly $[0, 0.25]$.

- **Set arithmetic:** e.g., if $x_k := x_i + x_j$, we set
 $$x_{ik} = \{(x_i, x_i + x_j) | (x_i, x_j) \in x_{ij}\},$$
 $$x_{jk} = \{(x_j, x_i + x_j) | (x_i, x_j) \in x_{ij}\},$$
 $$x_{kl} = \{(x_i + x_j, x_l) | (x_i, x_j) \in x_{ij}, (x_i, x_l) \in x_{il}, (x_j, x_l) \in x_{jl}\}.$$
10. From Main Idea to Actual Computer Implementation

- We fix the number C of granules (e.g., $C = 10$).
- We divide each interval x_i into C equal parts X_i.
- Thus each box $x_i \times x_j$ is divided into C^2 subboxes $X_i \times X_j$.
- We then describe each set x_{ij} by listing all subboxes $X_i \times X_j$ which have common elements with x_{ij}.
- The union of such subboxes is an enclosure for the desired set x_{ij}.
11. Implementing Arithmetic Operations

- **Example:** implementing

 \[x_{ik} = \left\{ (x_i, x_i + x_j) \mid (x_i, x_j) \in x_{ij} \right\}. \]

- **Step 1:** we take all the subboxes \(X_i \times X_j \) that form the set \(x_{ij} \).

- **Step 2:** for each of these subboxes, we enclosure the corresponding set of pairs

 \[\left\{ (x_i, x_i + x_j) \mid (x_i, x_j) \in X_i \times X_j \right\} \]

 into a set \(X_i \times (X_i + X_j) \).

- **Step 3:** we add all subboxes \(X_i \times X_k \) intersecting with this set to the enclosure for \(x_{ik} \).

- **Enclosure property:** we always have enclosure.

- **Relative accuracy:** \(1/C \).
12. **First Example: Computing the Range of** $x - x$

- For $f(x) = x - x$ on $[0, 1]$, the actual range is $[0, 0]$;
- **Problem:** straightforward interval computations lead to an enclosure $[0, 1] - [0, 1] = [-1, 1]$.
- In straightforward interval computations:
 - we have $r_1 = x$ with interval $r_1 = [0, 1]$;
 - we have $r_2 = x$ with interval $r_2 = [0, 1]$;
 - the variables r_1 and r_2 are dependent, but we ignore this dependence.
- **New approach:** $r_1 = r_2 = [0, 1]$, and r_{12}:

 ![Diagram](image)

- The resulting set is the exact range $\{0\} = [0, 0]$.
13. First Example (cont-d)

- **Problem**: compute the range of $f(x) = x - x$ on $[0, 1]$.
- In the new approach: we have $r_1 = r_2 = [0, 1]$, and we also have r_{12}:

```
  ×
  ×
  ×
  ×
  ×
```

- For each small box, we have $[-0.2, 0.2]$, so the union is $[-0.2, 0.2]$.
- If we divide into more pieces, we get close to 0.
14. Second Example: Computing the Range of $x - x^2$

- **Straightforward approach:** $r_1 = x$ with $r_1 = [0, 1]$, $r_2 = x^2$ with $r_2 = [0, 1]$, $[0, 1] - [0, 1] = [-1, 1] \supseteq [0, 0.25]$.

- **New approach:** for $R_1 = [0.2, 0.4]$, we have $R_1^2 = [0.04, 0.16] \subseteq [0, 0.2]$.

- For $R_1 = [0.4, 0.6]$, $R_1^2 = [0.16, 0.25] \subseteq [0, 0.2] \cup [0.2, 0.4]$, etc.

- For each pair $R_1 \times R_2$, we have $R_1 - R_2 = [-0.2, 0.2]$, $[0, 0.4]$ and $[0.2, 0.6]$.

- So, the union of sets $R_1 - R_2$ is $r_3 = [-0.2, 0.6]$.

- If we divide into more pieces, we get closer to $[0, 0.25]$.
15. Limitations of This Approach

• **Fact**: to get an accuracy ε, we must use $\sim 1/\varepsilon$ granules.

• **Reasonable situation**: we want to compute the result with k digits of accuracy, i.e., with accuracy $\varepsilon = 10^{-k}$.

• **Problem**: we must consider exponentially many boxes ($\sim 10^k$).

• **Conclusion**: this method is only applicable
 – when we want to know the desired quantity
 – with a given accuracy (e.g., 10%).
16. Estimating Variance under Interval Uncertainty

- **We know:** intervals x_1, \ldots, x_n of possible values of x_i.
- **We need to compute:** the range of the variance $V = \frac{1}{n} \cdot M - \frac{1}{n^2} \cdot E^2$, where $M \overset{\text{def}}{=} \sum_{i=1}^{n} x_i^2$ and $E \overset{\text{def}}{=} \sum_{i=1}^{n} x_i$.
- **Natural idea:** compute $M_k \overset{\text{def}}{=} \sum_{i=1}^{k} x_i^2$ and $E_k \overset{\text{def}}{=} \sum_{i=1}^{k} x_i$:

 $M_0 = E_0 = 0$, $(M_{k+1}, E_{k+1}) = (M_k + x_{k+1}^2, E_k + x_{k+1})$.

- **Set computations:** $p_0 = \{(M_0, E_0)\} = \{(0, 0)\}$,

 $p_{k+1} = \{(M_k + x^2, E_k + x) \mid (M_k, E_k) \in p_k, x \in x_{k+1}\}$,

 $V = \left\{ \frac{1}{n} \cdot M - \frac{1}{n^2} \cdot E^2 \mid (E, M) \in p_n \right\}$.

- **Accuracy:** after n steps, we add the inaccuracy of n/C. Thus, to get $n/C \approx \varepsilon$, we must choose $C = n/\varepsilon$.

- **Computation time:** C^3 subboxes on n steps – $O(n^4)$.
17. Other Statistical Characteristics

- **Central moment:** $C_d = \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - \bar{x})^d$ is a linear combination of d moments $M^{(j)} \overset{\text{def}}{=} \sum_{i=1}^{n} x_i^j$ for $j = 1, \ldots, d$.

- **How to compute:** keep, for each k, the set of possible values of tuples $(M_{k}^{(1)}, \ldots, M_{k}^{(d)})$, where $M_{k}^{(j)} \overset{\text{def}}{=} \sum_{i=1}^{k} x_i^j$.

- **Computation time:** $n \cdot C^{d+1} \sim n^{d+2}$ steps.

- **Covariance:** $C = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i - \frac{1}{n^2} \cdot \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i$.

- **How to compute:** keep the values of the triples (C_k, X_k, Y_k), where $C_k \overset{\text{def}}{=} \sum_{i=1}^{k} x_i \cdot y_i$, $X_k \overset{\text{def}}{=} \sum_{i=1}^{k} x_i$, and $Y_k \overset{\text{def}}{=} \sum_{i=1}^{k} y_i$.

- **Correlation** $\rho = C / \sqrt{V_x \cdot V_y}$: similar.
18. Dynamical Systems under Interval Uncertainty

- **Situation:**
 \[x_i(t+1) = f_i(x_1(t), \ldots, x_m(t), t, a_1, \ldots, a_k, b_1(t), \ldots, b_l(t)), \]
 where:
 - the dependence \(f_i \) is known,
 - we know the intervals \(a_j \) of possible values of the global parameters \(a_i \), and
 - we know the intervals \(b_j(t) \) of possible values of the noise-like parameters \(b_j(t) \).

- **Set computations solution:**
 - keep the set of all possible values of a tuple
 \[(x_1(t), \ldots, x_m(t), a_1, \ldots, a_k), \]
 - use the dynamic equations to get the exact set of possible values of this tuple at the moment \(t + 1 \).
19. Possibility to Take Constraints into Account

- **Traditional formulation**: all combinations of \(x_i \in X_i \) are possible.

- **In practice**: we may have additional constraints on \(x_i \).

- **Example**: \(x_i = [-1, 1] \) and \(|x_i - x_{i+1}| \leq \varepsilon \) for some \(\varepsilon > 0 \) (i.e., \(x_i \) is smooth).

- **Estimating**: a high-frequency Fourier coefficient

\[
f = x_1 - x_2 + x_3 - x_4 + \ldots + x_{2n-1} - x_{2n}.
\]

- **Usual interval computations**: enclosure \([-2n, 2n]\).

- **Actual range** of \((x_1 - x_2) + (x_3 - x_4) + \ldots\) is \([-n \cdot \varepsilon, n \cdot \varepsilon]\).

- **Set computations approach**: keep the set \(S_k \) of pairs \((f_k, x_k)\), where \(f_k = x_1 - x_2 + \ldots + (-1)^{k+1} \cdot x_k \), then

\[
S_{k+1} = \{(f_k + (-1)^k \cdot x_{k+1}, x_{k+1}) \mid (f_k, x_k) \in S_k \& |x_k - x_{k+1}| \leq \varepsilon\}.
\]

- **Result**: almost exact bounds (modulo \(1/C \)).
20. Toy Example with Prior Dependence

- *Case study:* find the range of $r_1 - r_2$ when $r_1 = [0, 1]$, $r_2 = [0, 1]$, and $|r_1 - r_2| \leq 0.2$.

- *Actual range:* $[-0.2, 0.2]$.

- *Straightforward interval computations:* $[0, 1] - [0, 1] = [-1, 1]$.

- *New approach:*
 - First, we describe the set r_{12}:

 ![Diagram](image)

 - Next, we compute $\{r_1 - r_2 \mid (r_1, r_2) \in r_{12}\}$.

- *Result:* $[-0.2, 0.2]$.
21. Toy Example with Prior Dependence (cont-d)

- **Case study**: find the range of \(r_1 - r_2 \) when \(r_1 = [0, 1] \), \(r_2 = [0, 1] \), and \(|r_1 - r_2| \leq 0.1 \).

- **Actual range**: \([-0.2, 0.2]\).

- **Straightforward approach**: \([0, 1] - [0, 1] = [-1, 1]\).

- **New approach**: first, we describe the constraint in terms of subboxes:

 ![Subboxes Diagram]

 Next, we compute \(R_1 - R_2 \) for all possible pairs and take the union.

- **Result**: \([-0.6, 0.6]\).

- If we divide into more pieces, we get the enclosure closer to \([-0.2, 0.2]\).
22. **p-Boxes and Classes of Probability Distributions**

- **Situation:**
 - in addition to x_i,
 - we may also have *partial* information about the probabilities of different values $x_i \in x_i$.

- An *exact* probability distribution can be described, e.g., by its cumulative distribution function
 \[
 F_i(z) = \text{Prob}(x_i \leq z).
 \]

- A *partial* information means that instead of a single cdf, we have a *class* \mathcal{F} of possible cdfs.

- **p-box:**
 - for every z, we know an interval $\mathbf{F}(z) = [\underline{F}(z), \overline{F}(z)]$;
 - we consider all possible distributions for which, for all z, we have $F(z) \in \mathbf{F}(z)$.
23. Set Computations for p-Boxes and Classes of Probability Distributions

- **Idea:** keep and update, for all \(t \), the set of possible joint distributions for the tuple \((x_1(t), \ldots, a_1, \ldots) \).

- **Implementation:**
 - divide both the \(x \)-range and the probability (\(p \)-) range into \(C \) granules, and
 - describe, for each \(x \)-granule, which \(p \)-granules are covered.

- **Remaining challenge:**
 - to describe a p-subbox, we need to attach one of \(C \) probability granules to each of \(C \) \(x \)-granules;
 - these are \(\sim C^C \) such attachments, so we need \(\sim C^C \) subboxes;
 - for \(C = 10 \), we already get an unrealistic \(10^{10} \) increase in computation time.
24. Acknowledgments

This work was supported in part:

- by NSF grant HRD-0734825, and
- by Grant 1 T36 GM078000-01 from the National Institutes of Health.

Many thanks to Sergey P. Shary for valuable suggestions.
25. General Problem of Data Processing under Uncertainty

- **Indirect measurements:** way to measure y that are difficult (or even impossible) to measure directly.

- **Idea:** $y = f(x_1, \ldots, x_n)$

- **Problem:** measurements are never 100% accurate: $\tilde{x}_i \neq x_i$ ($\Delta x_i \neq 0$) hence

\[
\tilde{y} = f(\tilde{x}_1, \ldots, \tilde{x}_n) \neq y = f(x_1, \ldots, x_n).
\]

What are bounds on $\Delta y \overset{\text{def}}{=} \tilde{y} - y$?
26. Probabilistic and Interval Uncertainty

\[
\begin{array}{c}
\Delta x_1 \\
\Delta x_2 \\
\vdots \\
\Delta x_n
\end{array} \quad f \quad \Delta y
\]

- **Traditional approach:** we know probability distribution for \(\Delta x_i \) (usually Gaussian).

- **Where it comes from:** calibration using standard MI.

- **Problem:** calibration is not possible in:
 - fundamental science
 - manufacturing

- **Solution:** we know upper bounds \(\Delta_i \) on \(|\Delta x_i| \) hence
 \[x_i \in [\tilde{x}_i - \Delta_i, \tilde{x}_i + \Delta_i].\]
27. Interval Computations: A Problem

\[y = f(x_1, \ldots, x_n) \]

- **Given:** an algorithm \(y = f(x_1, \ldots, x_n) \) and \(n \) intervals \(x_i = [x_i, \overline{x}_i] \).

- **Compute:** the corresponding range of \(y \):
 \[[\underline{y}, \overline{y}] = \{ f(x_1, \ldots, x_n) \mid x_1 \in [x_1, \overline{x}_1], \ldots, x_n \in [x_n, \overline{x}_n] \} \]

- **Fact:** NP-hard even for quadratic \(f \).

- **Challenge:** when are feasible algorithm possible?

- **Challenge:** when computing \(y = [\underline{y}, \overline{y}] \) is not feasible, find a good approximation \(Y \supseteq y \).
28. Interval Computations: A Brief History

- **Origins**: Archimedes (Ancient Greece)
- **Modern pioneers**: Warmus (Poland), Sunaga (Japan), Moore (USA), 1956–59
- **First boom**: early 1960s.
- **First challenge**: taking interval uncertainty into account when planning spaceflights to the Moon.
- **Current applications** (sample):
 - design of elementary particle colliders: Berz, Kyoko (USA)
 - will a comet hit the Earth: Berz, Moore (USA)
 - robotics: Jaulin (France), Neumaier (Austria)
 - chemical engineering: Stadtherr (USA)
29. Alternative Approach: Maximum Entropy

- **Situation:** in many practical applications, it is very difficult to come up with the probabilities.

- **Traditional engineering approach:** use probabilistic techniques.

- **Problem:** many different probability distributions are consistent with the same observations.

- **Solution:** select one of these distributions – e.g., the one with the largest entropy.

- **Example – single variable:** if all we know is that \(x \in [\underline{x}, \bar{x}] \), then MaxEnt leads to a uniform distribution on \([\underline{x}, \bar{x}]\).

- **Example – multiple variables:** different variables are independently distributed.
30. Limitations of Maximum Entropy Approach

- **Example:** simplest algorithm \(y = x_1 + \ldots + x_n \).
- **Measurement errors:** \(\Delta x_i \in [-\Delta, \Delta] \).
- **Analysis:** \(\Delta y = \Delta x_1 + \ldots + \Delta x_n \).
- **Worst case situation:** \(\Delta y = n \cdot \Delta \).
- **Maximum Entropy approach:** due to Central Limit Theorem, \(\Delta y \) is \(\approx \) normal, with \(\sigma = \Delta \cdot \frac{\sqrt{n}}{\sqrt{3}} \).
- **Why this may be inadequate:** we get \(\Delta \sim \sqrt{n} \), but due to correlation, it is possible that \(\Delta = n \cdot \Delta \sim n \gg \sqrt{n} \).
- **Conclusion:** using a single distribution can be very misleading, especially if we want guaranteed results.
- **Examples:** high-risk application areas such as space exploration or nuclear engineering.
31. Interval Arithmetic: Foundations of Interval Techniques

• **Problem:** compute the range

\[[y, \bar{y}] = \{ f(x_1, \ldots, x_n) \mid x_1 \in [\underline{x}_1, \overline{x}_1], \ldots, x_n \in [\underline{x}_n, \overline{x}_n] \}. \]

• **Interval arithmetic:** for arithmetic operations \(f(x_1, x_2) \) (and for elementary functions), we have explicit formulas for the range.

• **Examples:** when \(x_1 \in x_1 = [\underline{x}_1, \overline{x}_1] \) and \(x_2 \in x_2 = [\underline{x}_2, \overline{x}_2] \), then:

 - The range \(x_1 + x_2 \) for \(x_1 + x_2 \) is \([\underline{x}_1 + \underline{x}_2, \overline{x}_1 + \overline{x}_2] \).
 - The range \(x_1 - x_2 \) for \(x_1 - x_2 \) is \([\underline{x}_1 - \underline{x}_2, \overline{x}_1 - \overline{x}_2] \).
 - The range \(x_1 \cdot x_2 \) for \(x_1 \cdot x_2 \) is \([\underline{y}, \overline{y}] \), where

 \[\underline{y} = \min(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2); \]
 \[\overline{y} = \max(\underline{x}_1 \cdot \underline{x}_2, \underline{x}_1 \cdot \overline{x}_2, \overline{x}_1 \cdot \underline{x}_2, \overline{x}_1 \cdot \overline{x}_2). \]

• The range \(1/x_1 \) for \(1/x_1 \) is \([1/\overline{x}_1, 1/\underline{x}_1] \) (if \(0 \not\in x_1 \)).
32. Straightforward Interval Computations: Example

- **Example:** \(f(x) = (x - 2) \cdot (x + 2), \ x \in [1, 2]. \)

- How will the computer compute it?
 - \(r_1 := x - 2; \)
 - \(r_2 := x + 2; \)
 - \(r_3 := r_1 \cdot r_2. \)

- **Main idea:** perform the same operations, but with **intervals** instead of **numbers**:
 - \(r_1 := [1, 2] - [2, 2] = [-1, 0]; \)
 - \(r_2 := [1, 2] + [2, 2] = [3, 4]; \)
 - \(r_3 := [-1, 0] \cdot [3, 4] = [-4, 0]. \)

- **Actual range:** \(f(x) = [-3, 0]. \)

- **Comment:** this is just a toy example, there are more efficient ways of computing an enclosure \(Y \supseteq y. \)
33. First Idea: Use of Monotonicity

- **Reminder:** for arithmetic, we had exact ranges.
- **Reason:** $+$, $-$, \cdot are monotonic in each variable.
- **How monotonicity helps:** if $f(x_1, \ldots, x_n)$ is (non-strictly) increasing ($f \uparrow$) in each x_i, then
 \[f(x_1, \ldots, x_n) = [f(x_1, \ldots, x_n), f(x_1, \ldots, x_n)]. \]
- **Similarly:** if $f \uparrow$ for some x_i and $f \downarrow$ for other x_j ($-$).
- **Fact:** $f \uparrow$ in x_i if $\frac{\partial f}{\partial x_i} \geq 0$.
- **Checking monotonicity:** check that the range $[r_i, \bar{r}_i]$ of $\frac{\partial f}{\partial x_i}$ on x_i has $r_i \geq 0$.
- **Differentiation:** by Automatic Differentiation (AD) tools.
- **Estimating ranges of $\frac{\partial f}{\partial x_i}$:** straightforward interval comp.
34. Monotonicity: Example

- **Idea:** if the range \([r_i, \bar{r}_i]\) of each \(\frac{\partial f}{\partial x_i}\) on \(x_i\) has \(r_i \geq 0\), then
 \[
f(x_1, \ldots, x_n) = [f(x_1, \ldots, x_n), f(\bar{x}_1, \ldots, \bar{x}_n)].\]

- **Example:** \(f(x) = (x - 2) \cdot (x + 2), \ x = [1, 2].\)

- **Case \(n = 1\):** if the range \([r, \bar{r}]\) of \(\frac{df}{dx}\) on \(x\) has \(r \geq 0\), then
 \[
f(x) = [f(x), f(\bar{x})].\]

- **AD:** \(\frac{df}{dx} = 1 \cdot (x + 2) + (x - 2) \cdot 1 = 2x.\)

- **Checking:** \([r, \bar{r}] = [2, 4]\), with \(2 \geq 0.\)

- **Result:** \(f([1, 2]) = [f(1), f(2)] = [-3, 0].\)

- **Comparison:** this is the exact range.
35. Non-Monotonic Example

- **Example:** \(f(x) = x \cdot (1 - x), \ x \in [0, 1] \).
- How will the computer compute it?
 - \(r_1 := 1 - x; \)
 - \(r_2 := x \cdot r_1. \)

- **Straightforward interval computations:**
 - \(r_1 := [1, 1] - [0, 1] = [0, 1]; \)
 - \(r_2 := [0, 1] \cdot [0, 1] = [0, 1]. \)

- **Actual range:** min, max of \(f \) at \(x, \bar{x} \), or when \(\frac{df}{dx} = 0. \)

- Here, \(\frac{df}{dx} = 1 - 2x = 0 \) for \(x = 0.5 \), so
 - \(y = \min(0, 0.25, 0) = 0, \ \bar{y} = \max(0, 0.25, 0) = 0.25. \)

- **Resulting range:** \(f(x) = [0, 0.25]. \)
36. Second Idea: Centered Form

- **Main idea:** Intermediate Value Theorem

\[f(x_1, \ldots, x_n) = f(\bar{x}_1, \ldots, \bar{x}_n) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\chi) \cdot (x_i - \bar{x}_i) \]

for some \(\chi_i \in x_i \).

- **Corollary:** \(f(x_1, \ldots, x_n) \in Y \), where

\[Y = \tilde{y} + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x_1, \ldots, x_n) \cdot [-\Delta_i, \Delta_i]. \]

- **Differentiation:** by Automatic Differentiation (AD) tools.

- **Estimating the ranges of derivatives:**
 - if appropriate, by monotonicity, or
 - by straightforward interval computations, or
 - by centered form (more time but more accurate).
37. Centered Form: Example

- **General formula:**

\[Y = f(\tilde{x}_1, \ldots, \tilde{x}_n) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x_1, \ldots, x_n) \cdot [-\Delta_i, \Delta_i]. \]

- **Example:** \(f(x) = x \cdot (1 - x), \ x = [0, 1]. \)

- Here, \(x = [\tilde{x} - \Delta, \tilde{x} + \Delta], \) with \(\tilde{x} = 0.5 \) and \(\Delta = 0.5. \)

- **Case \(n = 1: \)** \(Y = f(\tilde{x}) + \frac{df}{dx}(x) \cdot [-\Delta, \Delta]. \)

- **AD:** \(\frac{df}{dx} = 1 \cdot (1 - x) + x \cdot (-1) = 1 - 2x. \)

- **Estimation:** we have \(\frac{df}{dx}(x) = 1 - 2 \cdot [0, 1] = [-1, 1]. \)

- **Result:** \(Y = 0.5 \cdot (1 - 0.5) + [-1, 1] \cdot [-0.5, 0.5] = 0.25 + [-0.5, 0.5] = [-0.25, 0.75]. \)

- **Comparison:** actual range \([0, 0.25]\), straightforward \([0, 1]\).
38. Third Idea: Bisection

• Known: accuracy $O(\Delta^2_i)$ of first order formula

$$f(x_1, \ldots, x_n) = f(\tilde{x}_1, \ldots, \tilde{x}_n) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\chi) \cdot (x_i - \tilde{x}_i).$$

• Idea: if the intervals are too wide, we:
 – split one of them in half ($\Delta^2_i \rightarrow \Delta^2_i/4$); and
 – take the union of the resulting ranges.

• Example: $f(x) = x \cdot (1 - x)$, where $x \in x = [0, 1]$.

• Split: take $x' = [0, 0.5]$ and $x'' = [0.5, 1]$.

• 1st range: $1 - 2 \cdot x = 1 - 2 \cdot [0, 0.5] = [0, 1]$, so $f \uparrow$ and $f(x') = [f(0), f(0.5)] = [0, 0.25]$.

• 2nd range: $1 - 2 \cdot x = 1 - 2 \cdot [0.5, 1] = [-1, 0]$, so $f \downarrow$ and $f(x'') = [f(1), f(0.5)] = [0, 0.25]$.

• Result: $f(x') \cup f(x'') = [0, 0.25] -$ exact.
39. Alternative Approach: Affine Arithmetic

- **So far:** we compute the range of $x \cdot (1 - x)$ by multiplying ranges of x and $1 - x$.

- **We ignore:** that both factors depend on x and are, thus, dependent.

- **Idea:** for each intermediate result a, keep an explicit dependence on $\Delta x_i = \tilde{x}_i - x_i$ (at least its linear terms).

- **Implementation:**

 \[a = a_0 + \sum_{i=1}^{n} a_i \cdot \Delta x_i + [a, \bar{a}] . \]

- **We start:** with $x_i = \tilde{x}_i - \Delta x_i$, i.e.,

 \[\tilde{x}_i + 0 \cdot \Delta x_1 + \ldots + 0 \cdot \Delta x_{i-1} + (-1) \cdot \Delta x_i + 0 \cdot \Delta x_{i+1} + \ldots + 0 \cdot \Delta x_n + [0, 0] . \]

- **Description:** $a_0 = \tilde{x}_i$, $a_i = -1$, $a_j = 0$ for $j \neq i$, and $[a, \bar{a}] = [0, 0]$.
40. **Affine Arithmetic: Operations**

- **Representation:** \(a = a_0 + \sum_{i=1}^{n} a_i \cdot \Delta x_i + [a, \bar{a}] \).

- **Input:** \(a = a_0 + \sum_{i=1}^{n} a_i \cdot \Delta x_i + a \) and \(b = b_0 + \sum_{i=1}^{n} b_i \cdot \Delta x_i + b \).

- **Operations:** \(c = a \otimes b \).

- **Addition:** \(c_0 = a_0 + b_0, c_i = a_i + b_i, c = a + b \).

- **Subtraction:** \(c_0 = a_0 - b_0, c_i = a_i - b_i, c = a - b \).

- **Multiplication:** \(c_0 = a_0 \cdot b_0, c_i = a_0 \cdot b_i + b_0 \cdot a_i \),

\[
\begin{align*}
c &= a_0 \cdot b + b_0 \cdot a + \sum_{i \neq j} a_i \cdot b_j \cdot [-\Delta_i, \Delta_i] \cdot [-\Delta_j, \Delta_j] + \\
&\quad \sum_{i} a_i \cdot b_i \cdot [-\Delta_i, \Delta_i]^2 + \\
&\quad \left(\sum_{i} a_i \cdot [-\Delta_i, \Delta_i] \right) \cdot b + \left(\sum_{i} b_i \cdot [-\Delta_i, \Delta_i] \right) \cdot a + a \cdot b.
\end{align*}
\]
41. **Affine Arithmetic: Example**

- **Example:** \(f(x) = x \cdot (1 - x), \ x \in [0, 1] \).
- Here, \(n = 1, \ \tilde{x} = 0.5, \) and \(\Delta = 0.5 \).
- How will the computer compute it?
 - \(r_1 := 1 - x; \)
 - \(r_2 := x \cdot r_1. \)
- **Affine arithmetic:** we start with \(x = 0.5 - \Delta x + [0, 0]; \)
 - \(r_1 := 1 - (0.5 - \Delta) = 0.5 + \Delta x; \)
 - \(r_2 := (0.5 - \Delta x) \cdot (0.5 + \Delta x), \) i.e.,
 \[
 r_2 = 0.25 + 0 \cdot \Delta x - [-\Delta, \Delta]^2 = 0.25 + [-\Delta^2, 0].
 \]
- **Resulting range:** \(y = 0.25 + [-0.25, 0] = [0, 0.25]. \)
- **Comparison:** this is the exact range.
42. Affine Arithmetic: Towards More Accurate Estimates

- In our simple example: we got the exact range.
- In general: range estimation is NP-hard.
- Meaning: a feasible (polynomial-time) algorithm will sometimes lead to excess width: \(Y \supset y \).
- Conclusion: affine arithmetic may lead to excess width.
- Question: how to get more accurate estimates?
- First idea: bisection.
- Second idea (Taylor arithmetic):
 - affine arithmetic: \(a = a_0 + \sum a_i \cdot \Delta x_i + a \);
 - meaning: we keep linear terms in \(\Delta x_i \);
 - idea: keep, e.g., quadratic terms
 \[
 a = a_0 + \sum a_i \cdot \Delta x_i + \sum a_{ij} \cdot \Delta x_i \cdot \Delta x_j + a.
 \]
43. Interval Computations vs. Affine Arithmetic: Comparative Analysis

- **Objective:** we want a method that computes a reasonable estimate for the range in reasonable time.

- **Conclusion – how to compare different methods:**
 - how accurate are the estimates, and
 - how fast we can compute them.

- **Accuracy:** affine arithmetic leads to more accurate ranges.

- **Computation time:**
 - **Interval arithmetic:** for each intermediate result \(a \), we compute two values: endpoints \(a \) and \(\bar{a} \) of \([a, \bar{a}]\).
 - **Affine arithmetic:** for each \(a \), we compute \(n + 3 \) values:
 \[
 a_0, a_1, \ldots, a_n, a, \bar{a}.
 \]

- **Conclusion:** affine arithmetic is \(\sim n \) times slower.
44. Solving Systems of Equations: Extending Known Algorithms to Situations with Interval Uncertainty

- We have: a system of equations $g_i(y_1, \ldots, y_n) = a_i$ with unknowns y_i;
- We know: a_i with interval uncertainty: $a_i \in [a_i, \bar{a}_i]$;
- We want: to find the corresponding ranges of y_j.
- First case: for exactly known a_i, we have an algorithm $y_j = f_j(a_1, \ldots, a_n)$ for solving the system.
- Example: system of linear equations.
- Solution: apply interval computations techniques to find the range $f_j([a_1, \bar{a}_1], \ldots, [a_n, \bar{a}_n])$.
- Better solution: for specific equations, we often already know which ideas work best.
- Example: linear equations $Ay = b$; y is monotonic in b.
45. Solving Systems of Equations When No Algorithm Is Known

• **Idea:**

 – parse each equation into elementary constraints, and

 – use interval computations to improve original ranges until we get a narrow range (= solution).

• **First example:** $x - x^2 = 0.5$, $x \in [0, 1]$ (no solution).

• **Parsing:** $r_1 = x^2$, $0.5 (= r_2) = x - r_1$.

• **Rules:** from $r_1 = x^2$, we extract two rules:

 (1) $x \rightarrow r_1 = x^2$;
 (2) $r_1 \rightarrow x = \sqrt{r_1}$;

 from $0.5 = x - r_1$, we extract two more rules:

 (3) $x \rightarrow r_1 = x - 0.5$;
 (4) $r_1 \rightarrow x = r_1 + 0.5$.
46. Solving Systems of Equations When No Algorithm Is Known: Example

- (1) \(r = x^2 \); (2) \(x = \sqrt{r} \); (3) \(r = x - 0.5 \); (4) \(x = r + 0.5 \).
- We start with: \(x = [0, 1] \), \(r = (-\infty, \infty) \).

(1) \(r = [0, 1]^2 = [0, 1] \), so \(r_{\text{new}} = (-\infty, \infty) \cap [0, 1] = [0, 1] \).

(2) \(x_{\text{new}} = \sqrt{[0, 1]} \cap [0, 1] = [0, 1] - \text{no change.} \)

(3) \(r_{\text{new}} = ([0, 1] - 0.5) \cap [0, 1] = [-0.5, 0.5] \cap [0, 1] = [0, 0.5] \).

(4) \(x_{\text{new}} = ([0, 0.5] + 0.5) \cap [0, 1] = [0.5, 1] \cap [0, 1] = [0.5, 1] \).

(1) \(r_{\text{new}} = [0.5, 1]^2 \cap [0, 0.5] = [0.25, 0.5] \).

(2) \(x_{\text{new}} = \sqrt{[0.25, 0.5]} \cap [0.5, 1] = [0.5, 0.71] \); round \(a \) down \(\downarrow \) and \(\bar{a} \) up \(\uparrow \), to guarantee enclosure.

(3) \(r_{\text{new}} = ([0.5, 0.71] - 0.5) \cap [0.25, 5] = [0.0.21] \cap [0.25, 0.5] \), i.e., \(r_{\text{new}} = \emptyset \).

- Conclusion: the original equation has no solutions.
47. Solving Systems of Equations: Second Example

- **Example**: $x - x^2 = 0$, $x \in [0, 1]$.

- **Parsing**: $r_1 = x^2$, $0 (= r_2) = x - r_1$.

- **Rules**: (1) $r = x^2$; (2) $x = \sqrt{r}$; (3) $r = x$; (4) $x = r$.

- **We start with**: $x = [0, 1]$, $r = (-\infty, \infty)$.

- **Problem**: after Rule 1, we’re stuck with $x = r = [0, 1]$.

- **Solution**: bisect $x = [0, 1]$ into $[0, 0.5]$ and $[0.5, 1]$.

- **For 1st subinterval**:

 - Rule 1 leads to $r_{\text{new}} = [0, 0.5]^2 \cap [0, 0.5] = [0, 0.25]$;
 - Rule 4 leads to $x_{\text{new}} = [0, 0.25]$;
 - Rule 1 leads to $r_{\text{new}} = [0, 0.25]^2 = [0, 0.0625]$;
 - Rule 4 leads to $x_{\text{new}} = [0, 0.0625]$; etc.
 - we converge to $x = 0$.
• For 2nd subinterval: we converge to $x = 1$.
48. Optimization: Extending Known Algorithms to Situations with Interval Uncertainty

- **Problem**: find \(y_1, \ldots, y_m\) for which

\[g(y_1, \ldots, y_m, a_1, \ldots, a_m) \to \text{max} . \]

- **We know**: \(a_i\) with interval uncertainty: \(a_i \in [a_i, \bar{a}_i]\);

- **We want**: to find the corresponding ranges of \(y_j\).

- **First case**: for exactly known \(a_i\), we have an algorithm

\[y_j = f_j(a_1, \ldots, a_n) \]

for solving the optimization problem.

- **Example**: quadratic objective function \(g\).

- **Solution**: apply interval computations techniques to find the range \(f_j([a_1, \bar{a}_1], \ldots, [a_n, \bar{a}_n])\).

- **Better solution**: for specific \(f\), we often already know which ideas work best.
49. Optimization When No Algorithm Is Known

- **Idea:** divide the original box \mathbf{x} into subboxes \mathbf{b}.
- If $\max_{x \in \mathbf{b}} g(x) < g(x')$ for a known x', dismiss \mathbf{b}.
- **Example:** $g(x) = x \cdot (1 - x)$, $\mathbf{x} = [0, 1]$.
- Divide into 10 (?) subboxes $\mathbf{b} = [0, 0.1], [0.1, 0.2], \ldots$
- Find $g(\tilde{\mathbf{b}})$ for each \mathbf{b}; the largest is $0.45 \cdot 0.55 = 0.2475$.
- Compute $G(\mathbf{b}) = g(\tilde{\mathbf{b}}) + (1 - 2 \cdot \mathbf{b}) \cdot [-\Delta, \Delta]$.
- Dismiss subboxes for which $\overline{Y} < 0.2475$.
- **Example:** for $[0.2, 0.3]$, we have
 \[0.25 \cdot (1 - 0.25) + (1 - 2 \cdot [0.2, 0.3]) \cdot [-0.05, 0.05].\]
- Here $\overline{Y} = 0.2175 < 0.2475$, so we dismiss $[0.2, 0.3]$.
- **Result:** keep only boxes $\subseteq [0.3, 0.7]$.
- **Further subdivision:** get us closer and closer to $x = 0.5$.
50. Case Study: Chip Design

- *Chip design*: one of the main objectives is to decrease the clock cycle.

- *Current approach*: uses worst-case (interval) techniques.

- *Problem*: the probability of the worst-case values is usually very small.

- *Result*: estimates are over-conservative – unnecessary over-design and under-performance of circuits.

- *Difficulty*: we only have *partial* information about the corresponding probability distributions.

- *Objective*: produce estimates valid for all distributions which are consistent with this information.

- *What we do*: provide such estimates for the clock time.
51. Estimating Clock Cycle: a Practical Problem

• **Objective:** estimate the clock cycle on the design stage.

• The clock cycle of a chip is constrained by the maximum path delay over all the circuit paths

\[D \overset{\text{def}}{=} \max(D_1, \ldots, D_N). \]

• The path delay \(D_i \) along the \(i \)-th path is the sum of the delays corresponding to the gates and wires along this path.

• Each of these delays, in turn, depends on several factors such as:

 – the variation caused by the current design practices,

 – environmental design characteristics (e.g., variations in temperature and in supply voltage), etc.
52. **Traditional (Interval) Approach to Estimating the Clock Cycle**

- **Traditional approach**: assume that each factor takes the worst possible value.

- **Result**: time delay when all the factors are at their worst.

- **Problem**:
 - different factors are usually independent;
 - combination of worst cases is improbable.

- **Computational result**: current estimates are 30% above the observed clock time.

- **Practical result**: the clock time is set too high – chips are over-designed and under-performing.
53. Robust Statistical Methods Are Needed

- **Ideal case:** we know probability distributions.
- **Solution:** Monte-Carlo simulations.
- **In practice:** we only have partial information about the distributions of some of the parameters; usually:
 - the mean, and
 - some characteristic of the deviation from the mean
 - e.g., the interval that is guaranteed to contain possible values of this parameter.
- **Possible approach:** Monte-Carlo with several possible distributions.
- **Problem:** no guarantee that the result is a valid bound for all possible distributions.
- **Objective:** provide robust bounds, i.e., bounds that work for all possible distributions.
54. Towards a Mathematical Formulation of the Problem

- **General case:** each gate delay d depends on the difference x_1, \ldots, x_n between the actual and the nominal values of the parameters.

- **Main assumption:** these differences are usually small.

- Each path delay D_i is the sum of gate delays.

- **Conclusion:** D_i is a linear function: $D_i = a_i + \sum_{j=1}^{n} a_{ij} \cdot x_j$ for some a_i and a_{ij}.

- The desired maximum delay $D = \max_i D_i$ has the form

$$D = F(x_1, \ldots, x_n) \overset{\text{def}}{=} \max_i \left(a_i + \sum_{j=1}^{n} a_{ij} \cdot x_j \right).$$
55. Towards a Mathematical Formulation of the Problem (cont-d)

- *Known*: maxima of linear function are exactly convex functions:
 \[F(\alpha \cdot x + (1 - \alpha) \cdot y) \leq \alpha \cdot F(x) + (1 - \alpha) \cdot F(y) \]
 for all \(x, y\) and for all \(\alpha \in [0, 1]\);

- *We know*: factors \(x_i\) are independent;
 - we know distribution of some of the factors;
 - for others, we know ranges \([x_j, \bar{x}_j]\) and means \(E_j\).

- *Given*: a convex function \(F \geq 0\) and a number \(\varepsilon > 0\).

- *Objective*: find the smallest \(y_0\) s.t. for all possible distributions, we have \(y \leq y_0\) with the probability \(\geq 1 - \varepsilon\).
56. Additional Property: Dependency is Non-Degenerate

- **Fact:** sometimes, we learn additional information about one of the factors x_j.
- **Example:** we learn that x_j actually belongs to a proper subinterval of the original interval $[x_j, \bar{x}_j]$.
- **Consequence:** the class \mathcal{P} of possible distributions is replaced with $\mathcal{P}' \subset \mathcal{P}$.
- **Result:** the new value y'_0 can only decrease: $y'_0 \leq y_0$.
- **Fact:** if x_j is irrelevant for y, then $y'_0 = y_0$.
- **Assumption:** irrelevant variables been weeded out.
- **Formalization:** if we narrow down one of the intervals $[x_j, \bar{x}_j]$, the resulting value y_0 decreases: $y'_0 < y_0$.
57. Formulation of the Problem

GIVEN:
- \(n, k \leq n, \varepsilon > 0; \)
- a convex function \(y = F(x_1, \ldots, x_n) \geq 0; \)
- \(n - k \) cdfs \(F_j(x), k + 1 \leq j \leq n \);
- intervals \(x_1, \ldots, x_k \), values \(E_1, \ldots, E_k \),

TAKE: all joint probability distributions on \(\mathbb{R}^n \) for which:
- all \(x_i \) are independent,
- \(x_j \in x_j, E[x_j] = E_j \) for \(j \leq k \), and
- \(x_j \) have distribution \(F_j(x) \) for \(j > k \).

FIND: the smallest \(y_0 \) s.t. for all such distributions, \(F(x_1, \ldots, x_n) \leq y_0 \) with probability \(\geq 1 - \varepsilon \).

WHEN: the problem is non-degenerate – if we narrow down one of the intervals \(x_j \), \(y_0 \) decreases.
58. Main Result and How We Can Use It

• Result: y_0 is attained when for each j from 1 to k,
 - $x_j = x_j$ with probability $p_j \overset{\text{def}}{=} \frac{x_j - E_j}{x_j - x_j}$, and
 - $x_j = \bar{x}_j$ with probability $\bar{p}_j = \frac{E_j - x_j}{x_j - x_j}$.

• Algorithm:
 - simulate these distributions for x_j, $j < k$;
 - simulate known distributions for $j > k$;
 - use the simulated values $x_j^{(s)}$ to find
 $$y^{(s)} = F(x_1^{(s)}, \ldots, x_n^{(s)});$$
 - sort N values $y^{(s)}$: $y(1) \leq y(2) \leq \ldots \leq y(N_i)$;
 - take $y(N_i \cdot (1 - \varepsilon))$ as y_0.

59. Comment about Monte-Carlo Techniques

- **Traditional belief:** Monte-Carlo methods are inferior to analytical:
 - they are approximate;
 - they require large computation time;
 - simulations for several distributions, may mis-calculate the (desired) maximum over all distributions.

- **We proved:** the value corresponding to the selected distributions indeed provide the desired maximum value y_0.

- **General comment:**
 - justified Monte-Carlo methods often lead to faster computations than analytical techniques;
 - example: multi-D integration – where Monte-Carlo methods were originally invented.
60. Comment about Non-Linear Terms

- **Reminder**: in the above formula \(D_i = a_i + \sum_{j=1}^{n} a_{ij} \cdot x_j \), we ignored quadratic and higher order terms in the dependence of each path time \(D_i \) on parameters \(x_j \).

- **In reality**: we may need to take into account some quadratic terms.

- **Idea behind possible solution**: it is known that the max \(D = \max_i D_i \) of convex functions \(D_i \) is convex.

- **Condition when this idea works**: when each dependence \(D_i(x_1, \ldots, x_k, \ldots) \) is still convex.

- **Solution**: in this case,
 - the function function \(D \) is still convex,
 - hence, our algorithm will work.
61. Conclusions

- **Problem of chip design:** decrease the clock cycle.

- **How this problem is solved now:** by using worst-case (interval) techniques.

- **Limitations of this solution:** the probability of the worst-case values is usually very small.

- **Consequence:** estimates are over-conservative, hence over-design and under-performance of circuits.

- **Objective:** find the clock time as y_0 s.t. for the actual delay y, we have $\text{Prob}(y > y_0) \leq \varepsilon$ for given $\varepsilon > 0$.

- **Difficulty:** we only have partial information about the corresponding distributions.

- **What we have described:** a general technique that allows us, in particular, to compute y_0.

Combining Interval and Probabilistic Uncertainty: General Case

- **Problem**: there are many ways to represent a probability distribution.

- **Idea**: look for an objective.

- **Objective**: make decisions $E_x[u(x, a)] \rightarrow \max_a$.

- **Case 1**: smooth $u(x)$.

 - **Analysis**: we have $u(x) = u(x_0) + (x - x_0) \cdot u'(x_0) + \ldots$.

 - **Conclusion**: we must know moments to estimate $E[u]$.

- **Case of uncertainty**: interval bounds on moments.

- **Case 2**: threshold-type $u(x)$.

 - **Conclusion**: we need cdf $F(x) = \text{Prob}(\xi \leq x)$.

- **Case of uncertainty**: p-box $[\underline{F}(x), \overline{F}(x)]$.
63. Extension of Interval Arithmetic to Probabilistic Case: Successes

- **General solution**: parse to elementary operations $+,-,\cdot,1/x,\max,\min$.

- Explicit formulas for arithmetic operations known for intervals, for p-boxes $\mathbf{F}(x) = [\underline{F}(x),\overline{F}(x)]$, for intervals $+1$st moments $E_i \overset{\text{def}}{=} E[x_i]$:

\[
\begin{align*}
x_1, E_1 & \\ x_2, E_2 & \quad \vdots \\ x_n, E_n & \\
\end{align*}
\]

\[
f \quad y, E
\]
64. Successes (cont-d)

- **Easy cases**: $+$, $-$, product of independent x_i.

- **Example of a non-trivial case**: multiplication $y = x_1 \cdot x_2$, when we have no information about the correlation:

 - $E = \max(p_1 + p_2 - 1, 0) \cdot \overline{x}_1 \cdot \overline{x}_2 + \min(p_1, 1 - p_2) \cdot \overline{x}_1 \cdot x_2 + \min(1 - p_1, p_2) \cdot x_1 \cdot \overline{x}_2 + \max(1 - p_1 - p_2, 0) \cdot x_1 \cdot x_2$;

 - $\overline{E} = \min(p_1, p_2) \cdot \overline{x}_1 \cdot \overline{x}_2 + \max(p_1 - p_2, 0) \cdot \overline{x}_1 \cdot \overline{x}_2 + \max(p_2 - p_1, 0) \cdot x_1 \cdot \overline{x}_2 + \min(1 - p_1, 1 - p_2) \cdot \overline{x}_1 \cdot \overline{x}_2$,

 where $p_i \overset{\text{def}}{=} (E_i - x_i) / (\overline{x}_i - x_i)$.
65. Challenges

• intervals + 2nd moments:

\[
\begin{align*}
&x_1, E_1, V_1 \\
x_2, E_2, V_2 \\
&\ldots \\
x_n, E_n, V_n \\
\end{align*}
\]

\[f\]

\[
\begin{align*}
y, E, V
\end{align*}
\]

• moments + p-boxes; e.g.:

\[
\begin{align*}
&E_1, F_1(x) \\
&E_2, F_2(x) \\
&\ldots \\
&E_n, F_n(x)
\end{align*}
\]

\[f\]

\[
\begin{align*}
&E, F(x)
\end{align*}
\]
66. Case Study: Bioinformatics

- **Practical problem:** find genetic difference between cancer cells and healthy cells.
- **Ideal case:** we directly measure concentration c of the gene in cancer cells and h in healthy cells.
- **In reality:** difficult to separate.
- **Solution:** we measure $y_i \approx x_i \cdot c + (1 - x_i) \cdot h$, where x_i is the percentage of cancer cells in i-th sample.
- **Equivalent form:** $a \cdot x_i + h \approx y_i$, where $a \overset{\text{def}}{=} c - h$.
67. Case Study: Bioinformatics (cont-d)

• If we know \(x_i \) exactly: Least Squares Method
\[
\sum_{i=1}^{n} (a \cdot x_i + h - y_i)^2 \rightarrow \min_{a,h}, \text{ hence } a = \frac{C(x,y)}{V(x)} \text{ and }
\]
\[
h = E(y) - a \cdot E(x), \text{ where } E(x) = \frac{1}{n} \sum_{i=1}^{n} x_i,
\]
\[
V(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - E(x))^2,
\]
\[
C(x,y) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - E(x)) \cdot (y_i - E(y)).
\]

• Interval uncertainty: experts manually count \(x_i \), and only provide interval bounds \(x_i \), e.g., \(x_i \in [0.7, 0.8] \).

• Problem: find the range of \(a \) and \(h \) corresponding to all possible values \(x_i \in [x_i, \bar{x}_i] \).
68. General Problem

- **General problem:**
 - we know intervals \(x_1 = [x_1, \overline{x}_1], \ldots, x_n = [x_n, \overline{x}_n], \)
 - compute the range of \(E(x) = \frac{1}{n} \sum_{i=1}^{n} x_i, \) population
 variance \(V = \frac{1}{n} \sum_{i=1}^{n} (x_i - E(x))^2, \) etc.

- **Difficulty:** NP-hard even for variance.

- **Known:**
 - efficient algorithms for \(V, \)
 - efficient algorithms for \(\overline{V} \) and \(C(x, y) \) for reasonable situations.

- **Bioinformatics case:** find intervals for \(C(x, y) \) and for \(V(x) \) and divide.
69. Case Study: Detecting Outliers

- In many application areas, it is important to detect outliers, i.e., unusual, abnormal values.
- In medicine, unusual values may indicate disease.
- In geophysics, abnormal values may indicate a mineral deposit (or an erroneous measurement result).
- In structural integrity testing, abnormal values may indicate faults in a structure.

- **Traditional engineering approach**: a new measurement result x is classified as an outlier if $x \notin [L, U]$, where

\[
L \overset{\text{def}}{=} E - k_0 \cdot \sigma, \quad U \overset{\text{def}}{=} E + k_0 \cdot \sigma,
\]

and $k_0 > 1$ is pre-selected.

- **Comment**: most frequently, $k_0 = 2, 3, \text{or } 6$.
70. Outlier Detection Under Interval Uncertainty: A Problem

- In some practical situations, we only have intervals $x_i = [\underline{x}_i, \overline{x}_i]$.
- Different $x_i \in x_i$ lead to different intervals $[L, U]$.
- A possible outlier: outside some k_0-sigma interval.
- Example: structural integrity – not to miss a fault.
- A guaranteed outlier: outside all k_0-sigma intervals.
- Example: before a surgery, we want to make sure that there is a micro-calcification.
- A value x is a possible outlier if $x \notin [\underline{L}, \overline{U}]$.
- A value x is a guaranteed outlier if $x \notin [L, U]$.
- Conclusion: to detect outliers, we must know the ranges of $L = E - k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$.
71. Outlier Detection Under Interval Uncertainty: A Solution

- **We need:** to detect outliers, we must compute the ranges of $L = E - k_0 \cdot \sigma$ and $U = E + k_0 \cdot \sigma$.

- **We know:** how to compute the ranges E and $[\sigma, \bar{\sigma}]$ for E and σ.

- **Possibility:** use interval computations to conclude that $L \in E - k_0 \cdot [\sigma, \bar{\sigma}]$ and $L \in E + k_0 \cdot [\sigma, \bar{\sigma}]$.

- **Problem:** the resulting intervals for L and U are wider than the actual ranges.

- **Reason:** E and σ use the same inputs x_1, \ldots, x_n and are hence not independent from each other.

- **Practical consequence:** we miss some outliers.

- **Desirable:** compute exact ranges for L and U.

- **Application:** detecting outliers in gravity measurements.
72. **Fuzzy Computations: A Problem**

\[
\begin{align*}
&\mu_1(x_1) \\
&\mu_2(x_2) \\
&\vdots \\
&\mu_n(x_n) \\
\end{align*}
\]

\[
f \quad \mu = f(\mu_1, \ldots, \mu_n)
\]

- **Given:** an algorithm \(y = f(x_1, \ldots, x_n) \) and \(n \) fuzzy numbers \(\mu_i(x_i) \).

- **Compute:** \(\mu(y) = \max_{x_1, \ldots, x_n : f(x_1, \ldots, x_n) = y} \min(\mu_1(x_1), \ldots, \mu_n(x_n)) \).

- **Motivation:** \(y \) is a possible value of \(Y \leftrightarrow \exists x_1, \ldots, x_n \text{ s.t. each } x_i \text{ is a possible value of } X_i \text{ and } f(x_1, \ldots, x_n) = y \).

- **Details:** “and” is min, \(\exists \) (“or”) is max, hence

\[
\mu(y) = \max_{x_1, \ldots, x_n} \min(\mu_1(x_1), \ldots, \mu_n(x_n), t(f(x_1, \ldots, x_n) = y)),
\]

where \(t(\text{true}) = 1 \) and \(t(\text{false}) = 0 \).
73. Fuzzy Computations: Reduction to Interval Computations

- **Problem (reminder):**
 - *Given:* an algorithm \(y = f(x_1, \ldots, x_n) \) and \(n \) fuzzy numbers \(X_i \) described by membership functions \(\mu_i(x_i) \).
 - *Compute:* \(Y = f(X_1, \ldots, X_n) \), where \(Y \) is defined by Zadeh’s extension principle:
 \[
 \mu(y) = \max_{x_1, \ldots, x_n: f(x_1, \ldots, x_n) = y} \min(\mu_1(x_1), \ldots, \mu_n(x_n)).
 \]

- **Idea:** represent each \(X_i \) by its \(\alpha \)-cuts
 \[
 X_i(\alpha) = \{ x_i : \mu_i(x_i) \geq \alpha \}.
 \]

- **Advantage:** for continuous \(f \), for every \(\alpha \), we have
 \[
 Y(\alpha) = f(X_1(\alpha), \ldots, X_n(\alpha)).
 \]

- **Resulting algorithm:** for \(\alpha = 0, 0.1, 0.2, \ldots, 1 \) apply interval computations techniques to compute \(Y(\alpha) \).
74. Proof of the Result about Chips

- Let us fix the optimal distributions for x_2, \ldots, x_n; then,
 \[\text{Prob}(D \leq y_0) = \sum_{(x_1, \ldots, x_n): D(x_1, \ldots, x_n) \leq y_0} p_1(x_1) \cdot p_2(x_2) \cdot \ldots \]

- So, \(\text{Prob}(D \leq y_0) = \sum_{i=0}^{N} c_i \cdot q_i \), where \(q_i \overset{\text{def}}{=} p_1(v_i) \).

- Restrictions: \(q_i \geq 0, \sum_{i=0}^{N} q_i = 1 \), and \(\sum_{i=0}^{N} q_i \cdot v_i = E_1 \).

- Thus, the worst-case distribution for x_1 is a solution to the following linear programming (LP) problem:
 \[\text{Minimize} \sum_{i=0}^{N} c_i \cdot q_i \text{ under the constraints } \sum_{i=0}^{N} q_i = 1 \text{ and } \sum_{i=0}^{N} q_i \cdot v_i = E_1, q_i \geq 0, \quad i = 0, 1, 2, \ldots, N. \]
75. Proof of the Result about Chips (cont-d)

- **Minimize:** \(\sum_{i=0}^{N} c_i \cdot q_i \) under the constraints \(\sum_{i=0}^{N} q_i = 1 \) and \(\sum_{i=0}^{N} q_i \cdot v_i = E_1, \ q_i \geq 0, \ i = 0, 1, 2, \ldots, N. \)

- **Known:** in LP with \(N + 1 \) unknowns \(q_0, q_1, \ldots, q_N, \geq N + 1 \) constraints are equalities.

- **In our case:** we have 2 equalities, so at least \(N - 1 \) constraints \(q_i \geq 0 \) are equalities.

- Hence, no more than 2 values \(q_i = p_1(v_i) \) are non-0.

- If corresponding \(v \) or \(v' \) are in \((x_1, \bar{x}_1) \), then for \([v, v'] \subset x_1 \) we get the same \(y_0 – \) in contradiction to non-degeneracy.

- Thus, the worst-case distribution is located at \(x_1 \) and \(\bar{x}_1 \).

- The condition that the mean of \(x_1 \) is \(E_1 \) leads to the desired formulas for \(p_1 \) and \(\bar{p}_1 \).