How the Amount of Cracks and Potholes Grows with Time: Symmetry-Based Explanation of Empirical Dependencies

Edgar Daniel Rodriguez Velasquez1,2,
Olga Kosheleva3, and Vladik Kreinovich4

1Universidad de Piura in Peru (UDEP), edgar.rodriguez@udep.pe
2Departments of 2Civil Engineering, 3Teacher Education, and 4Computer Science
University of Texas at El Paso, El Paso, Texas 79968, USA,
edrodriguezvelasquez@miners.utep.edu
olgak@utep.edu, vladik@utep.edu
1. Cracks and Potholes

- When a road is built, it is almost perfect – it has only miniature cracks and potholes.
- However, as the road is used, cracks and potholes appear and start growing.
- The amount of cracks is gauged the overall length C of longitudinal cracks outside the wheel path.
- The amount of potholes is usually gauged by the total area P of potholes.
- As the road is used, the quality of the pavement deteriorates, and the values C and P grow.
- This growth starts at some small values corresponding to the newly built road – age $t = 0$.
2. Cracks and Potholes (cont-d)

- It continues growing until they reach the maximum – the undesirable bad state.
- In this state, the whole road is covered by cracks and potholes.
- The empirical formulas for this growth are:

\[C = a_C \cdot \exp(-b_C \cdot \exp(-c_C \cdot t)); \quad P = a_P \cdot \exp(-b_P \cdot \exp(-c_P \cdot t)). \]

- In this talk, we use natural symmetry ideas to provide a theoretical explanation for these empirical formulas.
3. Natural Transformations

- In science and engineering, we are interested in the values of different physical quantities.
- We describe these quantities in numerical form.
- However, the numerical values of the corresponding quantities depend on the measuring unit.
- For some quantities such as temperature or time, the values also depend on the starting point.
- If we change the measuring unit for length from meters to centimeters, then all numerical values are \(\times 100 \).
- For example, 2 m becomes \(2 \cdot 100 = 200 \) cm.
4. Natural Transformations (cont-d)

- In general:
 - if we replace the original measuring unit with a new unit which is \(\lambda \) times smaller,
 - all numerical values are multiplied by \(\lambda \):
 \[
 x \rightarrow X = \lambda \cdot x.
 \]

- This numerical transformation is known as \emph{scaling}.

- Similarly, we can start measuring time:
 - not from our year 0,
 - but – as the French Revolution suggested – with the year 1789 when the revolution started.

- Then from all year values, we should subtract 1789.
5. Natural Transformations (cont-d)

- In general:
 - if we replace the original starting point with the one which is x_0 units before,
 - then we add x_0 to all numerical values:
 \[x \rightarrow X = x + x_0. \]

- This numerical transformation is known as *shift*.

6. Natural Symmetries

- For most physical quantities, there is no fixed measuring unit – and sometimes no fixed starting point.

- It is therefore reasonable to require that:
 - the dependencies $y = f(x)$ between physical quantities
 - also not depend on the choice of the measuring unit
 - (and possibly on the choice of the starting point).

- In physics, such invariance is called symmetry.
7. Natural Symmetries (cont-d)

- Of course:
 - if we just change the unit and/or starting point for x,
 - to keep the same formula true in the new units, we may need to appropriately change y.

- For example, to preserve the formula $d = v \cdot t$ – that the path is the product of speed and time:
 - when we change the unit for time,
 - we need to appropriately change the unit for speed.

- With this in mind, let us describe possible invariant dependencies.
8. Scaling-to-Scaling (sc-sc)

- Let us first consider the case when the dependence remains the same after we apply scaling to x and y.
- In precise terms, we assume that for every $\lambda > 0$, there exists a value $\mu(\lambda)$ (depending on λ) such that:
 - if $y = f(x)$,
 - then $Y = f(X)$, where $X = \lambda \cdot x$ and $Y = \mu(\lambda) \cdot y$.
- If we plug in the expressions for Y in terms of y and X in terms of x into $Y = f(X)$, we get $f(\lambda \cdot x) = \mu(\lambda) \cdot y$.
- Here, $y = f(x)$, so $f(\lambda \cdot x) = \mu(\lambda) \cdot f(x)$.
- It is known that every measurable dependence $f(x)$ with this property has the form $f(x) = A \cdot x^a$.

9. Comment

- The general proof is somewhat complicated.
- However, most physical dependencies are differentiable.
- For differentiable $f(x)$, this is easy to prove.
- Indeed, if $f(x)$ is differentiable, then the function $\mu(\lambda) = \frac{f(\lambda \cdot x)}{f(x)}$ is differentiable too.
- Thus, we can differentiate both sides of the equation $f(\lambda \cdot x) = \mu(\lambda) \cdot f(x)$ with respect to λ.
- As a result, we get $x \cdot f'(\lambda \cdot x) = \mu'(\lambda) \cdot f(x)$.
- In particular, for $\lambda = 1$, we get $x \cdot \frac{df}{dx} = a \cdot f$, where

$$a \overset{\text{def}}{=} \mu'(1).$$
10. Comment (cont-d)

- We can separate x and f if we multiply both sides of the equality by $\frac{dx}{x \cdot f} \cdot \frac{df}{f} = a \cdot \frac{dx}{x}$.

- Integrating both sides, we get $\ln(f) = a \cdot \ln(x) + C$, where C is the integration constant.

- Applying the function $\exp(z)$ of both sides, we get the desired expression $f(x) = A \cdot x^a$, with $A = \exp(C')$.
11. Shift-to-Scaling (sh-sc)

- Let us consider the case when the dependence remains the same after we apply shift to x and scaling to y.
- In this case, for every x_0, there exists a value $\mu(x_0)$ (depending on x_0) such that:
 - if $y = f(x)$,
 - then we have $Y = f(X)$, where $X = x + x_0$ and $Y = \mu(x_0) \cdot y$.
- If we plug in the expressions for Y in terms of y and X in terms of x into $Y = f(X)$, we get $f(x + x_0) = \mu(x_0) \cdot y$.
- Here, $y = f(x)$, so $f(x + x_0) = \mu(x_0) \cdot f(x)$.
- It is known that every measurable dependence $f(x)$ with this property has the form $f(x) = A \cdot \exp(a \cdot x)$.
12. Comment

- If \(f(x) \) is differentiable, then the function \(\mu(x_0) = \frac{f(x + x_0)}{f(x)} \) is differentiable too.

- Thus, we can differentiate both sides of the equation \(f(x + x_0) = \mu(x_0) \cdot f(x) \) with respect to \(x_0 \).

- As a result, we get \(f'(x + x_0) = \mu'(x_0) \cdot f(x) \).

- For \(x_0 = 0 \), we get \(\frac{df}{dx} = a \cdot f \), where \(a \overset{\text{def}}{=} \mu'(0) \).

- We can separate the variables \(x \) and \(f \) if we multiply both sides of the equality by \(\frac{dx}{f} : \frac{df}{f} = a \cdot dx \).

- Integrating both sides, we get \(\ln(f) = a \cdot x + C \), where \(C \) is the integration constant.

- Applying the function \(\exp(z) \) to both sides, we get \(f(x) = A \cdot \exp(a \cdot x) \), with \(A = \exp(C) \).
13. Scaling-to-Shift (sc-sh)

- Let us now consider the case when the dependence remains the same after we scale \(x \) and shift \(y \).

- In precise terms, we assume that for every \(\lambda > 0 \), there exists a value \(y_0(\lambda) \) (depending on \(\lambda \)) such that:

 \[- \text{ if } y = f(x), \]

 \[\text{ then } Y = f(X), \text{ where } X = \lambda \cdot x \text{ and } Y = y + y_0(\lambda).\]

- If we plug in the expressions for \(Y \) in terms of \(y \) and \(X \) in terms of \(x \) \(Y = f(X) \), we get \(f(\lambda \cdot x) = y + y_0(\lambda). \)

- Here, \(y = f(x) \), so \(f(\lambda \cdot x) = f(x) + y_0(\lambda). \)

- It is known that every measurable dependence \(f(x) \) with this property has the form \(f(x) = a \cdot \ln(x) + C. \)
14. Comment

- If \(f(x) \) is differentiable, then the function \(y_0(\lambda) = f(\lambda \cdot x) - f(x) \) is differentiable too.

- Thus, we can differentiate both sides of the equation \(f(\lambda \cdot x) = f(x) + y_0(\lambda) \) with respect to \(\lambda \).

- As a result, we get \(x \cdot f'(\lambda \cdot x) = y'_0(\lambda) \).

- In particular, for \(\lambda = 1 \), we get \(x \cdot \frac{df}{dx} = a \), where

\[
a \overset{\text{def}}{=} y'_0(1).
\]

- We can separate the variables \(x \) and \(f \) if we multiply both sides of the equality by \(\frac{dx}{x} : df = a \cdot \frac{dx}{x} \).

- Integrating both sides, we get \(f(x) = a \cdot \ln(x) + C' \), where \(C' \) is the integration constant.
15. Shift-to-Shift (sh-sh)

- In this case, for every \(x_0 \), there exists a value \(y_0(x_0) \) such that:
 - if \(y = f(x) \),
 - then we have \(Y = f(X) \), where \(X = x + x_0 \) and

\[
Y = y + y_0(x_0).
\]

- If we plug in the expressions for \(Y \) in terms of \(y \) and \(X \) in terms of \(x \) into \(Y = f(X) \), we get

\[
f(x + x_0) = y + y_0(x_0).
\]

- Here, \(y = f(x) \), so \(f(x + x_0) = f(x) + y_0(x_0) \).

- It is known that every measurable dependence \(f(x) \) with this property has the form \(f(x) = a \cdot x + C \).
16. Comment

• If \(f(x) \) is differentiable, then the function \(y_0(x_0) = f(x + x_0) - f(x) \) is differentiable too.

• Thus, we can differentiate both sides of the equation \(f(x + x_0) = f(x) + y_0(x_0) \) with respect to \(x_0 \).

• As a result, we get \(f'(x + x_0) = y'_0(x_0) \).

• In particular, for \(x_0 = 0 \), we get \(f'(x) = a \), where

\[
a \overset{\text{def}}{=} y'_0(0).
\]

• Integrating, we get \(f(x) = a \cdot x + C \), where \(C \) is the integration constant.
17. What We Want: A Brief Reminder

• We want to find the dependence of the quantity \(q \) (crack or pothole amount) on time \(t \); we know:
 – that the for \(t = 0 \), the value \(q(t) \) is small positive,
 – that the value \(q(t) \) increases with time, and
 – that the value \(q(t) \) tends to some large constant value when \(t \) increases.
18. What Are Possible Symmetries Here?

- For crack amount C and for pothole amount P, there is an absolute starting point: 0.
- Then, we have no cracks and no potholes.
- However, it makes sense to use different units of length and different units of area.
- So scaling makes perfect sense.
- For time, as we have mentioned, both shift and scaling make sense.
19. First Idea

• Let us see if any of the above symmetric dependencies satisfy the desired property.

• Since for q, only scaling makes sense, we can only consider two possibilities: sc-sc and sh-sc.

• Let us consider them one by one.

• In the sc-sc case, we have $q(t) = A \cdot t^a$.

• Since we want a non-negative value, we have $A > 0$.

• Since we want $q(t)$ to be increasing with time, we have to take $a > 0$.

• However, in this case:

 – $q(0)$ is zero – while we want it to be positive, and

 – $q(t)$ tends to infinity as t increases – while we want it to tend to some constant.
20. First Idea: sh-sc Case

- In the sh-sc case, we have $q(t) = A \cdot \exp(a \cdot t)$.
- Again, since we want a non-negative value, we have to take $A > 0$.
- Since we want $q(t)$ to be increasing with time, we have to take $a > 0$; in this case:
 - $q(0)$ is positive, which is exactly what we wanted,
 - however, $q(t)$ tends to infinity as t increases – while we want it to tend to some constant.
21. So What Do We Do?

- The first idea does not work, so what should we do?
- The above arguments about possible dependencies deal with the case when y directly depend on time t.
- However, in our case, cracks and potholes do not directly depend on time.
- What changes with time is stress, which, in its turn, causes the pavement to crack.
- In other words, instead of the direct dependence of the quantity q on time:
 - we have q depending on some auxiliary quantity z, and
 - we have z depending on time t.
22. So What Do We Do (cont-d)

- For both dependencies \(q(z) \) and \(z(t) \) we can have symmetry-motivated formulas.

- Let us see which combinations of these formulas provide the desired properties of \(q(t) = q(z(t)) \):
 - that this value is positive for \(t = 0 \),
 - that this value increases for \(t > 0 \), and
 - that this value tends to a finite limit when \(t \to \infty \).
23. Possible Options of the \(q(z) \) Dependence

- For \(q \), only scaling is possible.
- So, for possible dependencies \(q(z) \), we have:
 - either the sc-sc option \(q(z) = A \cdot z^a \)
 - or the sh-sc option \(q(z) = A \cdot \exp(a \cdot z) \).
- In the sc-sc option \(q(z) = A \cdot z^a \), it does not make sense to consider sh-sc or sc-sc options for \(z(t) \); indeed:
 - as one can check, this will be equivalent to sh-sc or sc-sc symmetry for \(q(t) \),
 - and we have already shown that this is not possible.
- So, to go beyond previously considered options, we need to consider two remaining options for \(z(t) \):
 - sh-sh option \(z(t) = a_1 \cdot t + C_1 \), and
 - sc-sh option \(z(t) = a_1 \cdot \ln(t) + C_1 \).
24. Possible Options (cont-d)

- In the 1st case, \(q(t) = A \cdot z^a = A \cdot (a_1 \cdot t + C_1)^a \), i.e.,
 \[q(t) = A_1 \cdot (t + c_2)^a, \]
 where \(A_1 = A \cdot (a_1)^a \) and \(c_2 = \frac{C_1}{a_1} \).

- The need to have positive values of \(q \) implies \(A > 0 \),
 the need to have \(q(t) \) increasing leads to \(a > 0 \).

- However then, for \(t \to \infty \), the resulting expression tends to infinity – while we want it bounded.

- In the 2nd case, \(q(t) = A \cdot (a_1 \cdot \ln(t) + C_1)^a \), i.e.,
 \[q(t) = A_1 \cdot (\ln(t) + c_2)^a, \]
 with \(A_1 = A \cdot (a_1)^a \) and \(c_2 = \frac{C_1}{a_1} \).

- The need to have positive values of \(q \) implies \(A > 0 \),
 the need to have \(q(t) \) increasing leads to \(a > 0 \).

- However then, for \(t \to \infty \), the resulting expression also tends to infinity – while we want it bounded.
25. **sh-sc Option** \(q(z) = A \cdot \exp(a \cdot z) \)

- In this option, it does not make sense to consider sh-sh or sc-sh options for \(z(t) \); indeed:
 - as one can check, this will be equivalent to sh-sc or sc-sc symmetry for \(q(t) \),
 - and we have already shown that this is not possible.

- So, to go beyond previously considered options, we need to consider two remaining options for \(z(t) \):
 - sc-sc option \(z(t) = A_1 \cdot t^{a_1} \), and
 - sh-sc option \(z(t) = A_1 \cdot \exp(a_1 \cdot t) \).

- In the 1st case, \(q(t) = A \cdot \exp(a \cdot z) = A \cdot \exp((a \cdot A_1) \cdot t^{a_1}) \).

- The need to have positive values of \(q \) implies \(A > 0 \).

- The behavior of this expression depends on the sign of the product \(a \cdot A_1 \).
26. **sh-sc Option** \(q(z) = A \cdot \exp(a \cdot z) \) (cont-d)

- If \(a \cdot A_1 > 0 \), then the need to have \(q(t) \) increasing leads to \(a_1 > 0 \).
- However then, for \(t \to \infty \), the resulting expression tends to infinity – and we want it bounded.
- If \(a \cdot A_1 < 0 \), then the need to have \(q(t) \) increasing leads to \(a_1 < 0 \).
- However then, for \(t \to 0 \), we have \(t^{-|a_1|} \to \infty \), hence \((a \cdot A_1)t^{-|a_1|} \to -\infty \), and \(q(t) = A \cdot \exp((a \cdot A_1)t^{-|a_1|}) \to 0 \), but we want the value \(q(0) \) to be positive.
- So, the only possible case is the second case, when \(q(t) = A \cdot \exp(a \cdot z) = A \cdot ((a \cdot A_1) \cdot \exp(a_1 \cdot t)) \).
- This is exactly the desired formulas.
- Thus, we have indeed justified the empirical dependencies.
27. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1834620 (CAHSI Includes), and
- HRD-1242122 (Cyber-ShARE Center of Excellence).