If We Take Into Account that Constraints Are Soft, Then Processing Constraints Becomes Algorithmically Solvable

Quentin Brefort and Luc Jaulin
ENSTA-Bretagne, LabSTICC, IHSEV, OSM
2 rue François Verny, 29806 Brest, France
Quentin.Brefort@ensta-bretagne.org, luc.jaulin@ensta-bretagne.fr

Martine Ceberio and Vladik Kreinovich
Department of Computer Science, University of Texas at El Paso
El Paso, Texas 79968, USA, mceberio@utep.edu, vladik@utep.edu
1. Main Objectives of Science and Engineering

- The main objective of science is to describe the world – and to predict its future state.
- The main objective of engineering is to select actions and designs \(a \) which lead to the desired future state.
- Information about the physical world usually comes in terms of the numerical values \(x_i \) of physical quantities.
- To describe the world means to find the values
 \[
 x = (x_1, \ldots, x_n).
 \]
- Each measurement constraints values \(x \) to a set \(X \).
- The relation between current state \(x \) and future state \(y \) is often also only approximately known, as the set
 \[
 R \overset{\text{def}}{=} \{(x, y) : (x, y) \text{ is possible}\} \subseteq X \times Y.
 \]
2. First Computational Problem

• We need to describe the results of each measurement.
• It is often difficult to directly measure the values x_i.
• Instead, we measure an easier-to-measure quantity y related to x_i by a known formula $y = f(x_1, \ldots, x_n)$.
• We usually know the upper bound Δ on the measurement accuracy.
• So, once we know the measurement result \tilde{y}, we can conclude that the actual value y is in

$$[\underline{y}, \overline{y}] \overset{\text{def}}{=} [\tilde{y} - \Delta, \tilde{y} + \Delta].$$

• Given: a computable function $f(x_1, \ldots, x_n)$ and computable values \underline{y} and \overline{y}.
• We need to describe: the set $\{x : \underline{y} \leq f(x) \leq \overline{y}\}$ of all the states x consistent with this measurement.
3. **Second Computational Problem**

- We need to be able to *combine* the results of several measurements.

- *We know:* the set S_1 of all the tuples which are consistent with the first measurement.

- *We know:* the set S_2 of all the tuples which are consistent with the second measurement.

- ...

- *We know:* the set S_m of all the tuples which are consistent with the m-th measurement.

- *We need to describe:* the set of all the tuples x consistent with the results of all available measurements:

$$S = S_1 \cap \ldots \cap S_m.$$
4. Third Computational Problem

• Then, we need to be able to predict the future state.

• *We know:* the set $S \subseteq X$ of possible states of the world.

• *We know:* the relation $R \subseteq X \times Y$ that describes the system’s dynamics.

• *We need to describe:* the set of possible Y of possible future states:

$$Y = \{y : (x, y) \in R \text{ for some } x \in S\}.$$

• In mathematical terms, Y is known as a *composition*:

$$Y = R \circ S.$$
5. Fourth Computational Problem

- Finally, we need to describe the set of possible actions.
- *We know:* the set $S \subseteq X$ of possible states.
- *We know:* the set A of possible actions.
- *We know:* the set $D \subseteq Y$ of desired future states.
- *We know:* a computable function $f(x, a)$ that describes how the future state depends:
 - on the initial state x, and
 - on the action a.
- *We need to describe:* the set of all actions a that lead to the desired goal

 $$\{ a \in A : f(x, a) \in D \text{ for all } x \in S \}.$$
6. What We Do in This Paper

- All four problems are *algorithmically unsolvable* if we assume that all the constraints are known *exactly*:
 - that we know the exact bounds on the measurement error,
 - that we know the exact relation between the present and future states, etc.
- However, in reality, these constraints are only know *approximately*.
- In other words, the constraints are actually *soft*.
- We show that:
 - if we take this softness into account,
 - then all four fundamental problems become algorithmically solvable.
7. What Is Computable: A Reminder

- A real number \(x \) is computable if there exists an algorithm that, given \(k \in \mathbb{N} \), returns a rational \(r_k \) for which
 \[|x - r_k| \leq 2^{-k}. \]

- A function \(f : X \to Y \) is called computable if there exist algorithms \(A_1 \) and \(A_2 \):
 - \(A_1 \), given a rational tuple \(r \in X \) and \(\ell \in \mathbb{N} \), computes a \(2^{-\ell} \)-approximation to \(f(r) \);
 - \(A_2 \), given \(\ell \in \mathbb{N} \), generates \(k \in \mathbb{N} \) such that
 \[d(x, x') \leq 2^{-k} \text{ implies } d(f(x), f(x')) \leq 2^{-\ell}. \]

- A bounded closed set \(S \) is called computable if there exists an algorithm that:
 - given \(k \in \mathbb{N} \),
 - produces a finite list \(S_k \) of computable points which is \(2^{-k} \)-close to \(S \):
 \[d_H(S_k, S) \leq 2^{-k}. \]
8. Known Positive Results

- For every two computable numbers \(\ell < u \), we can, given a computable \(x \), check whether \(x > \ell \) or \(x < u \).
- To check this, it is sufficient to compute \(x, \ell, \) and \(u \) with a sufficient accuracy.
- There is an algorithm that, given two computable tuples \(x \) and \(y \), computes the distances
 \[
 d_\infty(x, y) \overset{\text{def}}{=} \max(|x_1 - y_1|, \ldots, |x_n - y_n|)
 \]
 \[
 d_2(x, y) \overset{\text{def}}{=} \sqrt{(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2}.
 \]
- Minimum and maximum are computable.
- Composition of computable functions is computable.
- In particular, maximum and minimum of finitely many computable functions is computable.
9. **Known Positive Results (cont-d)**

- It is algorithmically possible, given a computable set S and a computable function $F(x)$, to compute

$$\max_{x \in S} F(x) \text{ and } \min_{x \in S} F(x).$$

- For every computable f-n $F(x, y)$ and computable set $S \subseteq X$, the following f-ns are computable:

$$M(y) \overset{\text{def}}{=} \max_{x \in S} f(x, y) \text{ and } m(y) \overset{\text{def}}{=} \min_{x \in S} f(x, y).$$

- There is an algorithm that, given a computable tuple x and a computable set S, returns the distance $d(x, S)$.

- For every two computable sets A and B, their union $A \cup B$ is also computable.

- One can easily check that if A_k approximate A and B_k approximate B, then $A_k \cup B_k$ approximates $A \cup B$.
10. Known Positive Results (cont-d)

- For every two computable sets A and B, the set of pairs $A \times B$ is also computable.
- There exists an algorithm that:
 - given:
 * a computable set S,
 * a computable function f, and
 * computable real numbers $a < b$,
 - returns a computable number $\eta \in (a, b)$ for which the set $\{x \in S : f(x) \leq \eta\}$ is also computable.
11. Known Negative Results about Computable Objects

- No algorithm is possible that, given a computable real number \(a \), would check whether \(a = 0 \) or \(a \neq 0 \).
- No algorithm is possible that, given a computable real number \(a \), would check whether \(a \geq 0 \) or \(a < 0 \).
- No algorithm is possible that, given a computable real number \(a \), would check whether \(a \leq 0 \) or \(a > 0 \).
12. First Problem Is Not Algorithmically Solvable

- **No algorithm is possible that:**

 - given a computable function \(f(x_1, \ldots, x_n) \) and computable numbers \(y \) and \(\bar{y} \),

 - returns the set \(\{x : y \leq f(x) \leq \bar{y}\} \).

- **Proof:**

 - The function \(f(x_1) = \max(\min(x_1, 0), x_1 - 1) \) is computable.

 - For \(y = -1 \) and \(\bar{y} = a \), the set \(\{x : y \leq f(x) \leq \bar{y}\} \)
 is equal to \([-1, 1 + a]\) if \(a \geq 0 \) and to \([-1, a]\) else.

 - Thus, the maximum \(M \) of \(F(x_1) = x_1 \) on this set is equal to \(1 + a \) for \(a \geq 0 \) and to \(a \) else.

 - In particular, for \(|a| < 0.1 \), we get \(M \geq 0.9 \) when \(a \geq 0 \) and \(M < 0.1 \) when \(a < 0 \).

 - So, we could check whether \(a \geq 0 \) or \(a < 0 \), which is known to be impossible.
13. Under Crisp Constraints, All Four Problems Are Not Algorithmically Solvable

- **No algorithm is possible that:**
 - given a computable function $f(x)$ and computable numbers y and \overline{y},
 - returns the set $\{x : y \leq f(x) \leq \overline{y}\}$.

- **No algorithm is possible that**, given two computable sets S_1 and S_2, computes their intersection.

- **No algorithm is possible that**, given computable sets $S \subseteq X$ and $R \subseteq X \times Y$, returns the composition
 $$Y = R \circ S.$$

- **No algorithm is possible that**, given computable sets S, A, and D, returns the set
 $$\{a \in A : f(x, a) \in D \text{ for all } x \in S\}.$$
14. Under Soft Constraints, All Four Problems Are Algorithmically Solvable

- **There is an algorithm that**, given a computable function $f(x)$ and computable numbers $y < \bar{y}$ and $\varepsilon > 0$, returns:

 - a computable value \underline{Y} which is ε-close to y;
 - a computable value \overline{Y} which is ε-close to \bar{y}, and
 - a computable set $\{x : \underline{Y} \leq f(x) \leq \overline{Y}\}$.

- **For each set S and for each real number $\eta > 0$**, by an η-neighborhood $N_\eta(S)$, we mean $\{x : d(x, S) \leq \eta\}$.

- **There exists an algorithm that**:

 - given m computable sets S_1, \ldots, S_m, and a computable real number $\varepsilon > 0$,
 - returns a computable number $\eta \in (0, \varepsilon)$ for which the intersection $N_\eta(S_1) \cap \ldots \cap N_\eta(S_m)$ is computable.
15. Under Soft Constraints, All Four Problems Are Algorithmically Solvable (cont-d)

- There exists an algorithm that:
 - given computable sets $S \subseteq X$ and $R \subseteq X \times Y$ and a computable real number $\varepsilon > 0$,
 - returns a computable number $\eta \in (0, \varepsilon)$ for which the composition $N_\eta(R) \circ N_\eta(S)$ is computable.

- There exists an algorithm that:
 - given computable $S \subseteq X$, A, D, a computable function $f(x, a)$, and a computable real number $\varepsilon > 0$,
 - returns a computable $\eta \in (0, \varepsilon)$ for which the following set is computable:

$$\{a \in A : f(x, a) \in N_\eta(D) \text{ for all } x \in S\}.$$

16. What If Some Measurements Are Faulty

- In the above analysis, we assumed that all the measurements are reliable.

- A measuring instrument sometimes mis-performs, resulting in a outlier numerical value.

- Usually, we know what fraction of measurement results is unreliable.

- So, we know that out of m measurements, at least q are correct.

- The set S of possible states is thus equal to
 \[S = \bigcup_{I: |I|=q} \left(\bigcap_{i \in I} S_i \right). \]

- Under soft constraints, this set S is computable.

- However, one can prove that, in general, computing this set is an NP-hard problem.
17. Example: Locating an Underwater Robot

- To locate a robot, stationary sonars placed at known locations periodically send pings in all directions.
- A sonar receives a signal reflected from the robot.
- We can measure the “travel time” \(t_i \).
- Once we know the speed of sound \(v \), we can get the distance \(d_i = (v \cdot t_i)/2 \) to the robot.
- In the ideal case, we can find the coordinates \(x, y, \) and \(z \) if we know three distances

\[
\|r - r_i\| = \sqrt{(x - x_i)^2 + (y - y_i)^2 + (z - z_i)^2} = d_i.
\]

- In practice, measurements are imprecise: \(d_i \leq \tilde{d}_i \leq \bar{d}_i \).
- For each triple of measurement results \(\tilde{d}_i, \tilde{d}_j, \) and \(\tilde{d}_k \), we know that \(r \in S_{ijk} \overset{\text{def}}{=} S_i \cap S_j \cap S_k \).
18. Locating an Underwater Robot (cont-d)

- For each of the three coordinates x, y, and z, we compute the corresponding intervals

$$[\bar{x}_{ijk}, \underline{x}_{ijk}] = \{x : (x, y, z) \in S_{ijk}\},$$

$$[\bar{y}_{ijk}, \underline{y}_{ijk}] = \{y : (x, y, z) \in S_{ijk}\},$$

$$[\bar{z}_{ijk}, \underline{z}_{ijk}] = \{z : (x, y, z) \in S_{ijk}\}.$$

- Then, we select values that belong to $\geq q$ of such intervals.

- The resulting algorithm locates the robot in about 90% of the cases – better than known methods.

- This algorithm is also much faster than all previous algorithms.
19. Acknowledgment

- This work was supported in part by the US National Science Foundation grants:
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721.
- The work was performed when Quentin Brefort was visiting the University of Texas at El Paso.
- This visit was supported by ENSTA-Bretagne.
- The authors are thankful to the anonymous referees for valuable suggestions.