Robust Data Processing in the Presence of Uncertainty and Outliers: Case of Localization Problems

Anthony Welte¹, Luc Jaulin¹, Martine Ceberio², and Vladik Kreinovich²

¹Lab STICC, École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne), 2 rue François Verny 29806 Brest, France, tony.welte@gmail.com, lucjaulin@gmail.com

²Department of Computer Science, University of Texas at El Paso El Paso, Texas 79968, USA, mceberio@utep.edu, vladik@utep.edu
1. Outline

- To properly process data, we need to take into account:
 - the measurement errors and
 - the fact that some of the observations may be outliers.

- This is especially important in radar-based localization, where some signals may reflect:
 - not from the analyzed object,
 - but from some nearby object.

- There are known methods for situations when we have full information about the probabilities.

- There are methods for dealing with measurement errors when we only have partial info about prob.

- In this talk, we extend these methods to situations with outliers.
2. Need for Data Processing

• We are often interested in the quantities \(p_1, \ldots, p_m \) which are difficult to measure directly.

• We find a measurable quantity \(y \) that depends on \(p_i \) and settings \(x_j \): \(y = f(p_1, \ldots, p_m, x_1, \ldots, x_n) \).

• For example, locating an object (robot, satellite, etc.), means finding its coordinates \(p_1, \ldots \)

• We cannot directly measure coordinates, but we can measure, e.g., a distance \(y = \sqrt{\sum_{i=1}^{3} (p_i - x_i)^2} \).

• In general, we measure \(y_k \) under different settings \((x_{k1}, \ldots) \), and reconstruct \(p_i \) from the condition

\[
y_k = f(p_1, \ldots, p_m, x_{k1}, \ldots, x_{kn}).
\]

• This is an important case of data processing.
3. Need to Take into Account Measurement Uncertainty and Outliers

- Measurement are never absolutely accurate.
- There is always a non-zero difference between the measurement result y_k and the actual (unknown) value:
 $$\Delta y_k \overset{\text{def}}{=} y_k - f(p_1, \ldots, p_m, x_{k1}, \ldots, x_{kn}) \neq 0.$$
- Sometimes, the measuring instrument malfunctions.
- Then, we get outliers – values which are very different from the actual quantity.
- This is especially important in radar-based localization, where some signals may reflect:
 - not from the analyzed object,
 - but from some nearby object.
4. Case When We Know the Probability Distribution $\rho(\Delta y)$ of the Measurement Error

- In this case, for each p, the probability to observe y_k is proportional to $\rho(\Delta y_k) = \rho(y_k - f(p, x_k))$.
- Measurement errors corresponding to different measurements are usually independent.
- So, the prob. of observing all the observed values y_1, \ldots, y_K is equal to the product $\prod_{k=1}^{K} \rho(y_k - f(p, x_k))$.
- It is reasonable to select the most probable value p, for which this product is the largest.
- This idea is known as the Maximum Likelihood Method.
- For Gaussian distributions, this leads to the usual Least Squares Method $\sum_{k=1}^{K} (\Delta y_k)^2 \rightarrow \min$.
5. What If We Only Have Partial Information About the Probabilities: First Case

- Sometimes, we know that the probability distribution belongs has the form \(\rho(\Delta y, \theta) \) for some \(\theta = (\theta_1, \ldots, \theta_\ell) \).
- In this case, the corresponding “likelihood function” \(L \) takes the form \(L = \prod_{k=1}^{K} \rho(\Delta y_k, \theta) \).
- We then select a pair \((p, \theta)\) for which the probability is the largest:
 \[
 L = \prod_{k=1}^{K} \rho(y_k - f(p, x_k), \theta) \rightarrow \max_{p, \theta}.
 \]
6. What If We Only Have Partial Information About the Probabilities: Non-Parametric Case

- In many practical situations, we do not know the finite-parametric family containing the actual distribution.
- Each possible distribution $\rho(\Delta y)$ can be characterized by its entropy $S = - \int \rho(\Delta y) \cdot \ln(\rho(\Delta y)) \, d\Delta y$.
- Entropy describes how many binary questions we need to ask to uniquely determine Δy.
- We want to select a distribution that to the largest extent reflects this uncertainty.
- In other words, it is reasonable to select a distribution for which the entropy is the largest possible.
- For example, among the distributions $\rho(\Delta y)$ located on $[-\Delta, \Delta]$, uniform distribution has the largest entropy.
7. Need for Interval Computations

- For uniform distributions:
 - the value $\rho(\Delta y_k) = 0$ if Δy_k is outside the interval $[-\Delta, \Delta]$ and
 - it is equal to a constant when Δy_k is inside this interval.

- Thus, the product L of these probabilities is constant when $|\Delta y_k| \leq \Delta$ for all k.

- So, instead of a single tuple p, we now need to describe all the tuples p for which

\[|y_k - f(p, x_k)| \leq \Delta \text{ for all } k = 1, \ldots, k. \]

- This is a particular case of interval computations.
8. What If We Have No Information About the Probabilities of Measurement Errors

- This situation is similar to the previous one, except that now, we do not know the bound Δ.

- A reasonable idea is to select Δ for which the corresponding likelihood $L = \frac{1}{(2\Delta)^K}$ is the largest possible.

- Selecting the largest possible L is equivalent to selecting the smallest possible Δ.

- The only constraint on Δ is that $\Delta \geq |\Delta y_k|$ for all k.

- The smallest Δ satisfying it is $\Delta = \max_k |\Delta y_k|$.

- Thus, minimizing Δ means selecting p for which $\max_k |\Delta y_k| = \max_k |y_k - f(p, x_k)|$ is the smallest.

- This minimax approach is indeed frequently used in data processing.
9. How to Take Both Uncertainty and Outliers into Account

● We considered 4 cases:
 – we know the exact distribution;
 – we know the finite-parametric family of distributions;
 – we know the upper bound on the (absolute value) of the corresponding difference; and
 – we have no information whatsoever, not even the upper bound.

● In principle, we may have the same four possible types of information about the outlier probabilities $\rho_0(\Delta y)$.

● At first glance, it may therefore seem that we can have $4 \times 4 = 16$ possible combinations.

● In reality, however, not all such combinations are possible.
10. Which Combinations Are Possible?

- Indeed, once we gather enough data, we can determine the corresponding probability distributions. Thus:
 - that we do not know the probability distribution of the measurement error
 - means that we have not yet collected a sufficient number of measurement results.

- The number of outliers is usually much smaller than the number of actual measurement results. So:
 - if we cannot determine the probability distribution for the measurement errors,
 - then we cannot determine the probability distribution for the outliers either.

- In general, we have less info about outliers than about the measurement errors.
11. Case When We Know Distributions $\rho(\Delta y)$ of the Measurement Error and $\rho_0(\Delta y)$ of Outliers

- If we know the set $M \subseteq \{1, \ldots, K\}$ of indices k of non-outliers, then
 \[L = \left(\prod_{k \in M} \rho(\Delta y_k) \right) \cdot \left(\prod_{k \notin M} \rho_0(\Delta y_k) \right). \]

- Now, we can use the Maximum Likelihood approach to determine both the parameter tuple \mathbf{p} and the set M.

- Max L is when we assign k to M if $\rho_0(\Delta y_k) < \rho(\Delta y_k)$, thus
 \[L = \prod_{k=1}^{K} \max(\rho(\Delta y_k)), \rho_0(\Delta y_k)) \to \max_{\mathbf{p}}. \]

- From the computational viewpoint, this is similar to the usual maximum likelihood, with
 \[g(\Delta y) \overset{\text{def}}{=} \max(\rho(\Delta y), \rho_0(\Delta y)) \]

- The difference is that \[\int g(\Delta y) \, dy > \int \rho(\Delta y) \, dy = 1. \]
12. Full Information about $\rho(\Delta y)$, Finite-Parametric Family $\rho_0(\Delta y, \varphi)$ for $\rho_0(\Delta y)$

- We can determine all the parameters (p and φ) from the requirement that the likelihood is the largest:

$$L = \prod_{k=1}^{K} \max(\rho(\Delta y_k), \rho_0(\Delta y_k, \varphi)) = \prod_{k=1}^{K} \max(\rho(y_k - f(p, x_k)), \rho_0(y_k - f(p, x_k), \varphi)) \to \max_{p, \varphi}.$$
13. Full information about $\rho(\Delta y)$, bound W on the outlier-related differences Δy_k

- Maximum entropy approach selects uniform distr. $\rho_0(\Delta y)$ on $[-W, W]$, with $\rho_0(\Delta y_k) = \frac{1}{2W}$.
- We determine p that maximizes the likelihood

$$L = \prod_{k=1}^{K} \max \left(\rho(\Delta y_k), \frac{1}{2W} \right) =$$

$$\prod_{k=1}^{K} \max \left(\rho(y_k - f(p, x_k)), \frac{1}{2W} \right)$$

under the constraint $|\Delta y_k| = |y_k - f(p, x_k)| \leq W$ for all k.

14. Full Information about $\rho(\Delta y)$, No Information About the Outlier-Related Differences Δy_k

- As before, in this case, we take

$$W = \max_{\ell} |\Delta y_{\ell}| = \max_{\ell} |y_{\ell} - f(p, x_{\ell})|.$$

- Thus, we select the parameters p that maximize the likelihood

$$L = \prod_{k=1}^{K} \max \left(\rho(y_k - f(p, x_k), \frac{1}{2 \cdot \max_{\ell} |y_{\ell} - f(p, x_{\ell})|} \right).$$
15. Finite-Parametric Information About $\rho(\Delta y)$ and About $\rho_0(\Delta)$

- We have families of distributions $\rho(\Delta y, \theta)$ and $\rho_0(\Delta y, \varphi)$ with unknown parameters θ and φ.
- In such a situation, we find the parameters p, θ, and φ that maximize the likelihood

$$L = \prod_{k=1}^{K} \max(\rho(\Delta y_k, \theta)), \rho_0(\Delta y_k, \varphi)) =$$

$$\prod_{k=1}^{K} \max(\rho(y_k - f(p, x_k), \theta), \rho_0(y_k - f(p, x_k), \varphi)).$$
We have a family of distributions $\rho(\Delta y, \theta)$ with unknown parameters θ.

In such a situation, we find the parameters p and θ that maximize the likelihood

$$L = \prod_{k=1}^{K} \max \left(\rho(\Delta y_k, \theta), \frac{1}{2W} \right) =$$

$$\prod_{k=1}^{K} \max \left(\rho(y_k - f(p, x_k), \theta), \frac{1}{2W} \right)$$

under the constraint $|\Delta y_k - y_k - f(p, x_k)| \leq W$ for all k.

16. **Finite-Parametric $\rho(\Delta y)$, Bound W on the Outlier-Related Differences Δy_k**
17. Finite-Parametric $\rho(\Delta y)$, No Information About the Outlier-Related Differences Δy_k

- Like in similar cases, we should select the smallest possible W:
 $$W = \max_{\ell} |\Delta y_{\ell}|.$$

- Thus, we need to select the parameters p and θ that maximize the likelihood
 $$L = \prod_{k=1}^{K} \max \left(\rho(y_k - f(p, x_k), \theta), \frac{1}{2 \cdot \max_{\ell} |y_{\ell} - f(p, x_{\ell})|} \right).$$
18. Bound Δ on the Measurement Errors, Bound W on the Outlier-Related Differences Δy_k

- In this case, by using the maximum entropy approach, we select the following distributions:
 - the measurement errors are uniformly distributed on the interval $[-\Delta, \Delta]$, with $\rho(\Delta y) = \frac{1}{2\Delta}$;
 - the differences Δy_k are uniformly distributed on the interval $[-W, W]$: $\rho_0(\Delta y) = \frac{1}{2W}$.

- In this case, we need to select the parameters p that maximize the likelihood $L = \prod_{k=1}^{K} g(\Delta y)$, where
 $$g(\Delta y) = \max(\rho(\Delta y), \rho_0(\Delta y)).$$

- Here, $g(\Delta y) = \frac{1}{2\Delta}$ when $|\Delta y| \leq \Delta$, $g(\Delta y) = \frac{1}{2W}$ when $\Delta < |\Delta y| \leq W$, and $g(\Delta y) = 0$ else.
19. Bound Δ on the Measurement Errors, Bound W on the Differences Δy_k (cont-d)

- Thus, maximizing the product $L = \prod_{k=1}^{\infty} g(\Delta y_k)$ means minimizing the number of outliers under the constraint

$$|\Delta y_k| = |y_k - f(p, x_k)| \leq W \text{ for all } k.$$

- So, we select p for which:
 - under these constraints,
 - the number of observations with $|y_k - f(p, x_k)| > \Delta$ is the smallest.
20. Bound \(\Delta \) on the Measurement Errors, No Information About the Outlier Differences \(\Delta y_k \)

- In this case, since we take \(W = \max_\ell |y_\ell - f(p,x_\ell)| \), there are no longer any limitations on \(p \).

- Thus, in this case, the maximum likelihood method simply means:
 - electing the values of the parameters \(p \)
 - for which the number of outliers (i.e., values for which \(|y_k - f(p,x_k)| > \Delta \)) is the smallest possible.

- This idea has been effectively used, as a heuristic idea, to deal with data processing under outliers.

- Thus, we get a probability-based justification for this heuristics.
21. Final Case, When We Have No Information About the Probabilities

- Finally, let us consider the case when we have no information about the probabilities:
 - neither about the probabilities of different values of the measurement errors,
 - nor about the probabilities of different outlier-related differences \(\Delta y = y - f(p, x) \).
- In this case, we need to select the corresponding bounds \(\Delta \) and \(W \) for which the likelihood is the largest.
- For each parameter tuple \(p \), the maximum of \(L \) is attained when \(W(p) = \max_{\ell} |\Delta y_\ell| \).
- So, it only remains to select \(p \) and \(\Delta \).
- For each \(p \) and \(\Delta \), let us denote by \(n(p, \Delta) \) the number of values \(k \) for which \(|y_k - f(p, x_k)| \leq \Delta \).
22. Final Case (cont-d)

- In terms of this notation, the desired likelihood value
 \[L(p, \Delta) = \prod_{k=1}^{K} g(y_k - f(p, x_k)) \]
 has the form
 \[L(p, \Delta) = \frac{1}{(2\Delta)^{n(p, \Delta)}} \cdot \frac{1}{(2W(p))^{K-n(p, \Delta)}}. \]

- Maximizing this expression is equivalent to minimizing its minus logarithm
 \[\psi(p, \Delta) = -\ln(L(p, \Delta)) = K \cdot \ln(2W(p)) + n(p, \Delta) \cdot (\ln(\Delta) - \ln(W(p))). \]

- Thus, we then select \(p \) for which the following expression is the smallest possible:
 \[\psi(p) = \min_{\Delta} (K \cdot \ln(2W(p)) + n(p, \Delta) \cdot (\ln(\Delta) - \ln(W(p)))) \],
 where \(W(p) = \max_{\ell} |y_{\ell} - f(p, x_{\ell})| \) and
 \[n(p, \Delta) = \#\{k : |y_k - f(p, x_k)| \leq \Delta\}. \]
23. Final Case: Checking How Well This Method Works

- We applied this idea to situations when Δy_k are distributed according to several reasonable distributions:
 - normal,
 - heavy-tailed power law, etc.
- In all these cases, we get 5-20% values classified as outliers.
- This is in line with the usual case of normal distribution, where:
 - 5% of the values lie outside the 2σ interval and
 - are, thus, usually dismissed as outliers.
24. Acknowledgments

• This work was supported in part:
 – by the National Science Foundation grants:
 • HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 • DUE-0926721, and
 – by an award from Prudential Foundation.

• This research was performed during Anthony Welte’s visit to the University of Texas at El Paso.

• The authors are also thankful:
 – to all the participants of the Summer Workshop on Interval Methods SWIM’2016 (Lyon, France)
 – for valuable discussions.