Relationship Between Measurement Results and Expert Estimates of Cumulative Quantities, on the Example of Pavement Roughness

Edgar Daniel Rodriguez Velasquez1,2, Carlos M. Chang Albitres2, and Vladik Kreinovich3
1Universidad de Piura in Peru (UDEP), edgar.rodriguez@udep.pe
Departments of 2Civil Engineering and 3Computer Science
University of Texas at El Paso, El Paso, Texas 79968, USA,
edrodriguezvelasquez@miners.utep.edu, cchangalbitres2@utep.edu, vladik@utep.edu
1. Cumulative Quantities

- Many physical quantities can be measured directly: e.g., we can directly measure mass, acceleration, force.
- However, we are often interested in cumulative quantities that combine values corresponding to:
 - different moments of time and/or
 - different locations.
- For example:
 - when we are studying public health or pollution or economic characteristics,
 - we are often interested in characteristics describing the whole city, the whole region, the whole country.
2. Formulation of the Problem

- Cumulative characteristics are not easy to measure.
- To measure each such characteristic, we need:
 - to perform a large number of measurements, and then
 - to use an appropriate algorithm to combine these results into a single value.
- Such measurements are complicated.
- So, we often have to supplement the measurement results with expert estimates.
- To process such data, it is desirable to describe both estimates in the same scale:
 - to estimate the actual value of the corresponding quantity based on the expert estimate, and
 - vice versa.
3. Case Study: Estimating Pavement Roughness

- Estimating road roughness is an important problem.
- Indeed, road pavements need to be maintained and repaired.
- Both maintenance and repair are expensive.
- So, it is desirable to estimate the pavement roughness as accurately as possible.
- If we overestimate the road roughness, we will waste money on “repairing” an already good road.
- If we underestimate the road roughness, the road segment will be left unrepaired and deteriorate further.
- As a result, the cost of future repair will skyrocket.
- The standard way to measure the pavement roughness is to use the International Roughness Index (IRI).
4. Estimating Pavement Roughness (cont-d)

- Crudely speaking, IRI describes the effect of the pavement roughness on a standardized model of a vehicle.
- Measuring IRI is not easy, because the real vehicles differ from this standardized model.
- As a result, we measure roughness by some instruments and use these measurements to estimate IRI.
- For example, we can:
 - perform measurements by driving an available vehicle along this road segment,
 - extract the local roughness characteristics from the effect of the pavement on this vehicle, and then
 - estimate the effect of the same pavement on the standardized vehicle.
5. **Estimating Pavement Roughness (cont-d)**

- In view of this difficulty, in many cases, practitioners rely on expert estimates of the pavement roughness.

- The corr. measure – estimated on a scale from 0 to 5 – is known as the Present Serviceability Rating (PSR).
6. Empirical Relation Between Measurement Results and Expert Estimates

- The empirical relation between PSR and IRI is described by the 1994 Al-Omari-Darter formula:
 \[\text{PSR} = 5 \cdot \exp(-0.0041 \cdot \text{IRI}). \]

- This formula remains actively used in pavement engineering.

- It works much better than many previously proposed alternative formulas, such as
 \[\text{PSR} = a + b \cdot \sqrt{\text{IRI}}. \]

- However, it is not clear why namely this formula works so well.
7. What We Do in This Talk

- We propose a possible explanation for the above empirical formula.
- This explanation will be general: it will apply to all possible cases of cumulative quantities.
- We will come up with a general formula $y = f(x)$ that describes how:
 - a subjective estimate y of a cumulative quantity
 - depends on the result x of its measurement.
- As a case study, we will use gauging road roughness.
8. Main Idea

- In general, the numerical value of a *subjective estimate* depends on the scale.
- In road roughness estimates, we usually use a 0-to-5 scale.
- In other applications, it may be more customary to use 0-to-10 or 0-to-1 scales.
- A usual way to transform between the two scales is to multiply all the values by a corresponding factor.
- For example, to transform from 0-to-10 to 0-to-1 scale, we multiply all the values by $\lambda = 0.1$.
- In other transitions, we can use transformations $y \rightarrow \lambda \cdot y$ with different re-scaling factors λ.
- There is no major advantage in selecting a specific scale.
9. Main Idea (cont-d)

- So, subjective estimates are defined modulo such a rescaling transformation $y \rightarrow \lambda \cdot y$.

- At first glance, the result of measuring a cumulative quantity may look uniquely determined.

- However, a detailed analysis shows that there is some non-uniqueness here as well.

- Indeed, the result of a cumulative measurement comes from combining values measured:
 - at different moments of time and/or
 - values corresponding to different spatial locations.

- For each individual measurement, the probability of a sensor’s malfunction may be low.

- However, often, we perform a large number of measurements.
10. Main Idea (cont-d)

- So, some of them bound to be caused by such malfunctions and are, thus, outliers.

- It is well known that even a single outlier can drastically change the average.

- So, to avoid such influence, the usual algorithms first filter out possible outliers.

- This filtering is not an exact science; we can set up:
 - slightly different thresholds for detecting an outlier,
 - slightly different threshold for allowed number of remaining outliers, etc.

- We may get a computation result that only takes actual signals into account.

- With a different setting, we may get a different result, affected by a few outliers.
11. Main Idea (cont-d)

- Let’s denote the average value of an outlier is L and the average number of such outliers is n.
- Then, the second scheme, in effect, adds a constant $n \cdot L$ to the cumulative value computed by the first scheme.
- So, the measured value of a cumulative quantity is defined modulo an addition of some value:

$$x \rightarrow x + a$$

for some constant a.
12. Motivation for Invariance

- We do not know exactly what is the ideal threshold, so we have no reason to select a specific shift as ideal.
- It is therefore reasonable to require:
 - that the desired formula $y = f(x)$ not depend on the choice of such a shift, i.e.,
 - that the corresponding dependence not change if we simply replace x with $x' = x + a$.
- Of course, we cannot just require that $f(x) = f(x + a)$ for all x and all a.
- Indeed, in this case, the function $f(x)$ will simply be a constant, but y increases with x.
- But this is clearly not how invariance is usually defined.
- For example, for many physical interactions, there is no fixed unit of time.
13. Motivation for Invariance (cont-d)

• So, formulas should not change if we simply change a unit for measuring time: \(t' = \lambda \cdot t \).

• The formula \(d = v \cdot t \) relating the distance \(d \), the velocity \(v \), and the time \(t \) should not change.

• We want to make this formula true when time is measured in the new units.

• So, we may need to also appropriately change the units of other related quantities.

• In the above example, we need to appropriately change the unit for measuring velocity, so that:

 – not only time units are changed, e.g., from hours to second, but

 – velocities are also changed from km/hour to km/sec.
14. Motivation for Invariance (cont-d)

- So, if we re-scale x, the formula $y = f(x)$ should remain valid if we appropriately re-scale y.

- As we have mentioned earlier, possible re-scalings of the subjective estimate y have the form $y \rightarrow y' = \lambda \cdot y$.

- Thus, for each a, there exists $\lambda(a)$ (depending on a) for which $y = f(x)$ implies that $y' = f(x')$, where

\[x' \overset{\text{def}}{=} x + a \text{ and } y' \overset{\text{def}}{=} \lambda \cdot y. \]
15. Definitions and the Main Result

- A monotonic function \(f(x) \) is called *unit-invariant* if:
 - for every real number \(a \), there exists a positive real number \(\lambda(a) \) for which, for each \(x \) and \(y \),
 - if \(y = f(x) \), then \(y' = f(x') \), where \(x' \overset{\text{def}}{=} x + a \) and \(y' \overset{\text{def}}{=} \lambda(a) \cdot y \).

- **Proposition.** A function \(f(x) \) is unit-invariant if and only if it has the form
 \[
 f(x) = C \cdot \exp(-b \cdot x)
 \]
 for some \(C \) and \(b \).

- For road roughness, this result explains the empirical formula.
16. Proof

- It is easy to check that every function \(y = f(x) = C \cdot \exp(-b \cdot x) \) is indeed unit-invariant.

- Indeed, for each \(a \), we have

\[
f(x') = f(x + a) = C \cdot \exp(-b \cdot (x + a)) = C \cdot \exp(-b \cdot x - b \cdot a) = \lambda(a) \cdot C \cdot \exp(-b \cdot x).
\]

- Here we denoted \(\lambda(a) \overset{\text{def}}{=} \exp(-b \cdot a) \).

- Thus here, indeed, \(y = f(x) \) implies that \(y' = f(x') \).
17. Proof (cont-d)

- Vice versa, let us assume that the function \(f(x) \) is unit-invariant.

- Then, for each \(a \), the condition \(y = f(x) \) implies that \(y' = f(x') \), i.e., that \(\lambda(a) \cdot y = f(x + a) \).

- Substituting \(y = f(x) \) into this equality, we conclude that \(f(x + a) = \lambda(a) \cdot f(x) \).

- It is known that every monotonic solution of this functional equation has the form

\[
f(x) = C \cdot \exp(-b \cdot x)
\]

for some \(C \) and \(b \).

- The proposition is proven.
18. Conclusions

- In pavement engineering, it is important to accurately gauge the quality of road segments.
- Such estimates help us decide how to best distribute the available resources between different road segments.
- So, proper and timely maintenance is performed on road segments whose quality has deteriorated.
- Thus, to avoid future costly repairs of untreated road segments.
- The standard way to gauge the quality of a road segment is International Roughness Index (IRI).
- It requires a large amount of costly measurements.
- As a result, it is not practically possible to regularly measure IRI of all road segments.
19. Conclusions (cont-d)

- So, IRI measurements are usually restricted to major roads.
- For local roads, we need to an indirect way to estimate their quality.
- To estimate the quality of a road segment, we:
 - combine user estimates of different segment properties
 - into a single index known as Present Serviceability Rating (PSR).
- There is an empirical formula relating IRI and PSR.
- However, one of the limitations of this formula is that it purely heuristic.
- This formula lacks a theoretical explanation and thus, the practitioners may be not fully trusting its results.
20. Conclusions (cont-d)

- In this paper, we provide such a theoretical explanation.
- We hope that the resulting increased trust in this formula will help enhance its use.
- Thus, it will help with roads management.
21. Acknowledgments

This work was supported in part by the National Science Foundation via grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- and HRD-1242122 (Cyber-ShARE Center of Excellence).