NP-Hardness Proofs With Realistic Computers Instead of Turing Machines: Towards Making Theory of Computation Course More Understandable and Relevant

Olga Kosheleva1 and Vladik Kreinovich2

Departments of 1Teacher Education and 2Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA
olgak@utep.edu, vladik@utep.edu
1. NP-Hardness Proofs Are Important

- In many application areas, certain problems are known to be NP-hard (= provably computationally intractable).
- Knowing that a general problem is NP-hard helps the researchers to concentrate on easier-to-solve problems:
 - to find a practically useful easier-to-solve subclass of problems, or
 - to replace the original problem with a relaxed easier-to-solve problem.
- For example, we may only want an approximate solution, or an answer which is correct w/high probability.
- It is important to make sure that the new problem is indeed easier-to-solve.
- Thus, it is desirable that the students learn how to prove NP-hardness or different problems.
2. Usual Proofs of NP-Hardness

- A historically first problem proven to be NP-hard is *propositional satisfiability*.
- This problem is about *propositional formulas*, i.e., expressions F like $(x_1 \& x_2) \lor (x_2 \& \neg x_3)$ obtained:
 - from propositional (“yes”-“no”) variables x_1, \ldots, x_n,
 - by using “and” ($\&$), “or” (\lor), and “not” (\neg).
- We are given a propositional formula F, we must find values x_1, \ldots, x_n that make it true.
- The usual NP-hardness proof uses *Turing machines*, a simple theoretical computer designed in 1936.
- A Turing machine is, in effect, a tape recorder with a simple controller and a potentially extendable tape.
- For example, in the Turing machine, there is no immediate access to a memory cell at a given location.
3. Proofs of NP-Hardness (cont-d)

- The only way to get to a cell #1,000,000 is to go from cell #0 to cell #1, to cell #2, . . . , to cell #1,000,000.

- It is amazing to learn that complex computations can be performed on such a primitive computer.

- However, when it comes to proving that no efficient algorithm exists:

 – the fact that, for some problem, no efficient solutions are possible on a Turing machine

 – is not a very convincing argument that this is impossible on (more complex) real computers.

- Yes, there are proofs that Turing machines are sufficient for proving NP-hardness.

- However, these proofs are beyond the scope of most textbooks.
4. Pedagogical Problem and What We Do About It

- As we mentioned, for students, Turing-machine-based NP-hardness proofs are not convincing at all.
- We propose a new version of the proof of NP-hardness of propositional satisfiability.
- This proof that uses a much more realistic (and general) model of a computer than Turing machine.
- This proof is somewhat more complex than the Turing-machine-based proofs.
- However, our model (and hence this proof) is closer to the actual computers and is, thus, easier to understand.
5. What Problems We Are Solving: Examples

- In mathematics, we are given a statement x and we want to find the proof y of either x or $\neg x$.
- Once we have a detailed proof y, it is easy to check its correctness, but inventing a proof is hard.
- A proof cannot be too long: it must be checkable.
- In physics, we have observations x, and we want to find a law y that describes them.
- Once we have y we can easily check whether it fits x, but coming up with y is often difficult.
- A law cannot be too long: otherwise, we can take the data as the law.
- In engineering, we have a specification x, and we need to find a design y that satisfies x.
6. What Problems We Are Solving: General Description

• In general:
 – we have a string x, and
 – we need to find y s.t. $C(x, y)$ and $\text{len}(y) \leq P_\ell(\text{len}(x))$.

• Here, $C(x, y)$ is a feasible property, i.e., a property that can be checked feasibly (in polynomial time).

• In such problems:
 – once we have a guess y,
 – we can check its correctness in polynomial time.

• “Computations” allowing guesses are known as non-deterministic.

• Thus, such problems are called Non-deterministic Polynomial (NP).
7. What Is NP-Hard: Reminder

- Ideally, we would like to call a problem *hard* if it cannot be solved by a feasible (polynomial-time) algorithm.

- Alas, for neither of the problems from NP, we can prove that this problem is hard in this sense.

- What we do know is that some problems are *harder* than others in the following sense:
 - every instance of a problem \(A \)
 - can be reduced to an appropriate instance of the problem \(B \).

- A problem is called *NP-hard* if every problem from NP can be reduced to it.

- In other words, a problem is NP-hard if it is harder than all other problems from the class NP.
8. Proof that Satisfiability Is NP-Hard: Idea

• We have an instance of an NP problem: given x find y for which $C(x, y)$ is true and $\text{len}(y) \leq P_\ell(\text{len}(x))$.

• We want to reduce it to propositional satisfiability.

• We start with a computational device that, given a string x of length $\text{len}(x) = n$ and y, checks $C(x, y)$.

• Computing C requires polynomial time $T \leq P(n)$.

• During this time, only cells at distance $\leq R = c \cdot T$ from the origin can influence the result.

• Let ΔV be the smallest cell volume.

• Within the sphere of volume $V = \frac{4}{3} \cdot \pi \cdot R^3 \sim T^3$, there are $\leq \frac{V}{\Delta V} \sim T^3$ cells, fewer than $\leq \text{const} \cdot (P(n))^3$.

• So, we have no more than polynomially many cells.
9. Proof that Satisfiability Is NP-Hard (cont-d)

- Let Δt be a time quantum.
- The state $S_{i,t+1}$ cell i at moment $(t+1) \cdot \Delta t$ can only be influenced by states $S_{j,t}$ of cells at distance $\leq r = c \cdot \Delta t$.
- In this vicinity, there are $\leq N_{\text{neigh}} = \frac{4}{3} \cdot \pi \cdot \frac{r^3}{\Delta V}$ cells; this number does not depend on the inputs size n:
 \[S_{i,t+1} = f_{i,t}(S_{i,t}, S_{j,t}, \ldots (\leq N_{\text{neigh}} \text{ terms})). \]
- Let S be the largest number of states of each cell.
- We can describe each state as 0, 1, 2, \ldots
- Then we need $B \overset{\text{def}}{=} \lceil \log_2(S) \rceil$ bits $s_{i,b,t}$, $1 \leq b \leq B$, to describe each state $S_{i,t}$, so:
 \[s_{i,b,t+1} = f_{i,t}(s_{i,1,t}, \ldots, s_{i,B,t}, s_{j,1,t}, \ldots, s_{j,B,t}, \ldots). \]
- We can then use a truth table to transform each such equation to a propositional formula $F_{i,b,t}$.
10. Proof that Satisfiability Is NP-Hard (final steps)

- For each cell i, bit b, and moment of time t, the fact that $s_{i,b,t+1}$ is computed correctly can be described as
 \[
 s_{i,b,t+1} = f_{i,t}(s_{i,1,t}, \ldots, s_{i,B,t}, s_{j,1,t}, \ldots, s_{j,B,t}, \ldots).
 \]

- We have shown that this property can be described by a propositional formulas $F_{i,b,t}$.

- By combining all these formulas, we get a long formula
 \[
 F_{\text{long}} \overset{\text{def}}{=} F_{1,1,1} \& F_{1,2,1} \& \ldots \& F_{i,b,t} \& \ldots
 \]

- Meaning of F_{long}: that $C(x, y)$ was checked correctly.

- We add the formulas describing that the input was x and that the output of checking $C(x, y)$ was “true”.

- The resulting propositional formula holds if and only if there exists y for which $C(x, y)$ is satisfied.

- Reduction is proven, so satisfiability is indeed NP-hard.
11. Acknowledgment

This work was supported in part

- by the National Science Foundation grants HRD-0734825 (Cyber-ShARE Center) and DUE-0926721, and

- by Grant 1 T36 GM078000-01 from the National Institutes of Health.