A Simple Geometric Model Provides a Possible Quantitative Explanation of the Advantages of Immediate Feedback in Student Learning

Octavio Lerma1, Olga Kosheleva2, and Vladik Kreinovich1

1Computational Science Program
2Department of Teacher Education
University of Texas at El Paso
El Paso, TX 79968, USA
lolera@episd.org, olgak@utep.edu, vladik@utep.edu
1. **Student Understanding is Extremely Important**

- One of the main objectives of a course – calculus, physics, etc. – is to help students understand its main concepts.
- Of course, it is also desirable that the students learn the corresponding methods and algorithms.
- However, understanding is the primary goal.
- If a student does not remember a formula by heart, she can look it up.
- However:
 - if a student does not have a good understanding of what, for example, is a derivative,
 - then even if this student remembers some formulas, he will not be able to decide which formula to apply.
2. How to Gauge Student Understanding

- To properly gauge student’s understanding, several disciplines have developed *concept inventories*.
- These are sets of important basic concepts and questions testing the students’ understanding.
- The first such Force Concept Inventory (FCI) was developed to gauge the students’ understanding of forces.
- A student’s degree of understanding is measured by the percentage of the questions that are answered correctly.
- The class’s degree of understanding is measured by averaging the students’ degrees.
- An ideal situation is when everyone has a perfect 100% understanding; in this case, the average score is 100%.
- In practice, the average score is smaller than 100%.
3. How to Compare Different Teaching Techniques

- We can measure the average score μ_0 before the class and the average score μ_f after the class.
- Ideally, the whole difference $100 - \mu_0$ disappears, i.e., the students’ score goes from μ_0 to $\mu_f = 100$.
- In practice, of course, the students’ gain $\mu_f - \mu_0$ is somewhat smaller than the ideal gain $100 - \mu_0$.
- It is reasonable to measure the success of a teaching method by which portion of the ideal gain is covered:

$$g \overset{\text{def}}{=} \frac{\mu_f - \mu_0}{100 - \mu_0}.$$
4. Empirical Results

• It turns out that the gain g does not depend on the initial level μ_0, on the textbook used, or on the teacher.

• Only one factor determines the value g: the absence or presence of immediate feedback.

• In traditionally taught classes,
 – where the students get their major feedback only after their first midterm exam,
 – the average gain is $g \approx 0.23$.

• For the classes with an immediate feedback, the average gain is twice larger: $g \approx 0.48$.

• In this talk, we provide a possible geometric explanation for this doubling of the learning rate.
5. Why Geometry

- Learning means changing the state of a student.
- At each moment of time, the state can be described by the scores x_1, \ldots, x_n on different tests.
- Each such state can be naturally represented as a point (x_1, \ldots, x_n) in the n-dimensional space.
- In the starting state S, the student does not know the material.
- The desired state D describes the situation when a student has the desired knowledge.
- When a student learns, the student’s state of knowledge changes continuously.
- It forms a (continuous) trajectory γ which starts at the starting state S and ends up at the desired state D.
6. First Simplifying Assumption: All Students Learn at the Same Rate

- Some students learn faster, others learn slower.
- The above empirical fact, however, is not about their \textit{individual} learning rates.
- It is about the \textit{average} rates of student learning, averaged over all kinds of students.
- From this viewpoint, it makes sense to assume that all the students have the same average learning rate.
- In geometric terms, this means that the learning time is proportional to the length of the corresponding curve γ.
- We thus need to show that learning trajectories corr. to immediate feedback are, on average, twice shorter.
7. Second Simplifying Assumption: the Shape of the Learning Trajectories

- At first, a student has misconceptions about physics or calculus, which lead him in a wrong direction.
- We can thus assume that at first, a student moves in a random direction.
- After the feedback, the student corrects his/her trajectory.
- In the case of immediate feedback, this correction comes right away, so the students goes in the right direction.
- In the traditional learning, with a midterm correction:
 - a student first follows a straight line of length \(d/2 \) which goes in a random direction,
 - and then takes a straight line to the midpoint \(M \).
- Then, a student goes from \(M \) to the destination \(D \).
8. 3rd Simplifying Assumption: 1-D State Space

- We can think of different numerical characteristics describing different aspects of student knowledge.
- In practice, to characterize the student’s knowledge, we use a single number – the overall grade for the course.
- It is therefore reasonable to assume that the state of a student is characterized by only one parameter \(x_1 \).
- In case of immediate feedback, the learning trajectory has length \(d \).
- To make a comparison, we must estimate the length of a trajectory corresponding to the traditional learning.
- This trajectory consists of two similar parts: connecting \(S \) and \(M \) and connecting \(M \) and \(D \).
- To estimate the total average length, we can thus estimate the average length from \(S \) to \(M \) and double it.
9. Analysis: Case of Traditional Learning

- A student initially goes either in the correct direction or in the opposite (wrong) direction.
- Randomly means that both directions occur with equal probability 1/2.
- If the student moves in the right direction, she gets exactly into the desired midpoint M.
- In this case, the length of the S-to-M part of the trajectory is exactly $d/2$.
- If the student starts in the wrong direction, he ends up at a point at distance $d/2$ – on the wrong side of S.
- Getting back to M then means first going back to S and then going from S to M.
- The overall length of this trajectory is thus $3d/2$.
10. Resulting Geometric Explanation

- Here:
 - with probability 1/2, the length is $d/2$;
 - with probability 1/2, the length is $3d/2$.

- So, the average length of the S-to-M part of the learning trajectory is equal to
 \[
 \frac{1}{2} \cdot \frac{d}{2} + \frac{1}{2} \cdot \frac{3d}{2} = d.
 \]

- The average length of the whole trajectory is double that, i.e., $2d$.

- This average length is twice larger than the length d corresponding to immediate feedback.

- This explains why immediate feedback makes learning, on average, twice faster.
11. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
- DUE-0926721.