Economics of Reciprocity and Temptation

Laxman Bokati1, Olga Kosheleva1,
Vladik Kreinovich1, and Nguyen Ngoc Thach2

1University of Texas at El Paso
500 W. University, El Paso TX 79968, USA
lbokati@miners.utep.edu, olgak@utep.edu, vladik@utep.edu

2Institute for Research Science and Banking Technology
Banking University HCMC, 39 Ham Nghi, District 1
Ho Chi Minh City, Vietnam
thachnn@buh.edu.vn
1. Behavioral Economics: A Brief Reminder

- Traditional economic models assumed that:
 - people thoroughly analyze all their options and
 - make optimal decisions based on this analysis.

- In many decision-making situations:
 - this assumption works reasonably well and
 - leads to a reasonably accurate description of an overall economic process.

- However, many research results – some of Nobel Prize quality – have shown that:
 - in many practical situations,
 - the actual people’s behavior differs from the assumed ideal one.

- The analysis of such behavior and its economic consequences is known as *behavioral economics*.
2. Challenges for Behavioral Economics

• Behavioral economics provides convincing and impressive examples of people’s non-optimal behavior.

• However, in many cases, it does not provide us with quantitative models predicting people’s behavior.

• Coming up with such models is an important challenge for behavioral economics.

• One way to come with such predictions is:
 – to understand why people’s behavior differs from the predictions of traditional economic models,
 – so that, hopefully, this understanding will lead us to the desired predictions.
3. Why People’s Behavior Differs from the Traditional Economic Predictions

- There are two main reasons why people’s behavior differs from the traditional economic models.
- The first reason is that people often have limited ability (and limited time) to make a decision.
- As a result, they sometimes make a sub-optimal decision.
- In such situations, it is, in general, not easy to come up with the adequate model of people’s behavior.
- This requires a deep knowledge of how exactly we process limited information in our brains.
- However, there is another reason why people’s behavior differs from the traditional economic models.
4. Why People’s Behavior Differs (cont-d)

- Traditional models oversimplify how people gauge gains from possible actions.
- In such situations, in principle, we can come up with quantitative models of human behavior.
- For this, we need to provide more adequate, more accurate models of human utility.
- Such situations are the “low-hanging fruits” of this research areas.
- These are topics in which there is the biggest hope of reaching quantitative descriptions of human behavior.
5. What We Do in This Talk

- We provide two examples of such phenomena.
- These examples correspond to (seemingly unrelated) phenomena of reciprocity and temptation.
- From the economic viewpoint, these are two different behaviors.
- However, it turns out that they can be explained by using similar ideas and similar techniques.
6. Utility in the Traditional Economic Models

• In the traditional economic models, it is usually assumed that a decision maker maximizes his/her gain.

• This gain is numerically expressed as utility u.

• This utility value describe the effect of this decision on this person at this particular moment of time.
7. Need to Go Beyond Traditional Models

- In these models, person’s decisions are not affected:
 - by gains (utilities) of others and/or
 - by gains of the same person at future moments of time.

- However, gains of others (and/or future gains of the same person) do affect our behavior.

- Hardly anyone would prefer, e.g., $101 to $100 if this increase is accompanied by someone’s severe suffering.

- Some people spend all their money like there is no tomorrow and retire in poverty.

- However, most people do limit somewhat their current expenses to save for retirement.

- It is all a matter of degree.
8. Dependence on Others’ Utilities

- Let $u_i^{(0)}$ be approximate utilities that come only from this person’s consumption.
- How can we take into account other people’s feelings?
- A natural way is to add, to $u_i^{(0)}$, terms proportional to other people’s utilities:

$$u_i = u_i^{(0)} + \sum_{j \neq i} \alpha_{ij} \cdot u_j.$$

- Here each coefficient α_{ij} describes how the utility of the i-th person depends on the utility of the j-th person.
- This phenomenon is known by a polite term *empathy*:
 - for positive α_{ij}, this describes how people feel better if others around them are happier;
 - it is also possible to have $\alpha_{ij} < 0$, when someone’s happiness makes the other person unhappy.
9. How to Describe Dependence on Utility in Different Moments of Time

• In the traditional models, we assume that:
 – a person’s utility at moment \(t \)
 – is determined only by his/her consumption at \(t \).

• In reality, the person also takes into account future utilities \(u_{t+1}, u_{t+2}, \ldots \), and past utilities \(u_{t-1}, u_{t-2}: \)

\[
u = u_t + \sum_{j>0} q_j \cdot u_{t+j} + \sum_{j<0} q_j \cdot u_{t+j}.
\]

• This is known as discounting, since a person usually considers future experiences as less valuable.

• E.g., people will pay less that a dollar for a chance to get a dollar a year from now.

• We will show that this explains reciprocity and temptation.
10. What Is Reciprocity

- Usually, people have reasonably fixed attitude to others.
- They feel empathy towards members of their family, members of their tribe, usually citizens of their country.
- They may also be consistently negative towards their country’s competitors.
- However, they also have widely fluctuating attitudes towards people with whom they work.
- It is difficult to predict how these attitudes will evolve – even in what direction they will evolve.
- Usually, people are nice to those who treat them nicely and negative to those who treat them badly.
11. What Is Reciprocity (cont-d)

- In terms of the coefficients α_{ij} it means that:
 - if α_{ji} is positive, then we expect α_{ij} to be positive;
 - if α_{ji} is negative, then we expect α_{ij} to be negative.

- This *reciprocity* phenomenon is intuitively clear – this is, after all, a natural human behavior.

- But how can we explain it in economic terms?
12. Let Us Formulate the Problem in Precise Terms

- Let us consider the simplest case, when we have only two people. Then:
 \[u_1 = u_1^{(0)} + \alpha_{12} \cdot u_2; \quad u_2 = u_2^{(0)} + \alpha_{21} \cdot u_1. \]

- Since each person tries to maximize his/her utility, a natural question is as follows:
 - suppose that Person 1 knows the attitude \(\alpha_{21} \) of Person 2 towards him/her;
 - what value \(\alpha_{12} \) describing his/her attitude should Person 1 select to maximize his/her utility \(u_1 \)?
13. Analysis of the Problem

- The above system of equations is easy to solve, we get

\[u_1 = \frac{u_1^{(0)} + \alpha_{12} \cdot u_2^{(0)}}{1 - \alpha_{12} \cdot \alpha_{21}}. \]

- This expression can take infinite value – i.e., as large a value as possible – if we take \(\alpha_{12} = \frac{1}{\alpha_{21}} \).

- We can make it positive – and as large as possible – if we take \(\alpha_{12} \) close to the inverse \(\frac{1}{\alpha_{21}} \).

- Then, the difference \(1 - \alpha_{12} \cdot \alpha_{21} \) will not be exactly 0, but be close to 0, with the same sign as the expression

\[u_1^{(0)} + \alpha_{12} \cdot u_2^{(0)}. \]
14. This Explains Reciprocity

- Indeed, according to the formula $\alpha_{12} = \frac{1}{\alpha_{21}}$:
 - if α_{21} is positive, then the selected value α_{12} is also positive, and
 - if α_{21} is negative, then the selected value α_{12} is also negative.
15. What Is Temptation

- A popular book by a Nobelist Richard H. Thaler starts the chapter on temptation with a simple example.
- A group of friends eats nuts before dinner.
- As they eat more and more nuts, they realize that:
 - if they continue,
 - they will have no appetite for the tasty dinner.
- So they decided to put away the bowl.
- All this sounds reasonable, until we start analyzing it from the economic viewpoint.
- From this viewpoint, the more options, the better.
- So how come the elimination of one of the options made everyone happier?
16. What If We Take Discounting Into Account

- Let us denote:
 - the overall amount of food that a person can eat in the evening by \(a \) (e.g., by \(a \) grams),
 - the utility for eating one gram of nuts by \(n \), the utility of eating one gram of dinner by \(d \),
 - the discounting coefficient from dinner to now by \(q_+ \), and
 - the amount of nuts that we eat now by \(x \).
- The variable \(x \) can take any value from 0 to \(a \).
- So, when we eat \(x \) grams of nuts and \(a - x \) grams of actual dinner, then the utility now is equal to
 \[
 n \cdot x + q_+ \cdot d \cdot (a - x).
 \]
- According to the usual decision making idea, we want to select \(x \) for which this utility is the largest.
17. Taking Discounting Into Account (cont-d)

- But this expression is linear in x.
- So its largest value on $[0, a]$ is attained at one of the endpoints of this interval, i.e., for $x = 0$ or for $x = a$.
- In the first case, we do not eat any nuts at all, in the second case, we do not eat any dinner.
- This may be mathematically reasonable, but this is not how people behave!
- How can we explain how people actually behave?
18. **At Different Moments of Time, People Have Different Preferences**

- So far, we assumed that the only way a person takes into account future events is by discounting.
- This would make sense if the same person at different moment of time has the same preferences.
- In reality, people’s preferences change.
- To some extent, the same person at different moments of time is a kind of a different person; so:
 - when a person makes decision,
 - he or she needs to find a compromise between today’s and future interests.
19. People’s Preferences Change (cont-d)

- This situation is similar to situation of joint decision making, when:
 - several people with somewhat different interests
 - try to come up with a group decision.
- The only difference is that:
 - different people can decide not to cooperate at all,
 - while here, “agents” (i.e., the same person at different moments of time) are “joined at the hip”,
 - decisions by one of them affect another one.
- Thus, to properly describe decision making, we need to view the problem as “group” decision making.
- It is group decision making by agents representing the same person at different moments of time.
20. People’s Preferences Change (cont-d)

- According to decision theory, a group decision should be maximizing the product of agents’ utilities.
- This is known as *Nash’s bargaining solution*.
- So, in our case, a person maximizes the product of his/her utilities at different moments of time.
- Let us show that this indeed avoids the un-realistic prediction that $x = 0$ or $x = a$.
21. How This Idea Helps

- Let’s consider the simplest case of 2 moments of time:
 - the original moment when we eat nuts, and
 - the future moment when we eat dinner.
- In the original moment of time, the utility is
 \[n \cdot x + q_+ \cdot d \cdot (a - x). \]
- Similarly, at the next moment of time, the utility is
 \[q_- \cdot n \cdot x + d \cdot (a - x). \]
- Here, \(q_- \) is a discounting coefficient.
- Thus, the correct value \(x \) maximizes the product
 \[(n \cdot x + q_+ \cdot d \cdot (a - x)) \cdot (q_- \cdot n \cdot x + d \cdot (a - x)). \]
- This function is quadratic.
- The maximum of a quadratic function on an interval
 is not necessarily attained at one of the endpoints.
22. How This Idea Helps (cont-d)

- Let us illustrate it on a simplified example where computations are easy:

\[a = 1, \quad n = 1, \quad d = 2, \quad q_+ = q_- = 0.25. \]

- In this case, we maximize the function

\[(x + 0.5 \cdot (1 - x)) \cdot (0.25 \cdot x + 2 \cdot (1 - x)) = (0.5 \cdot x + 0.5) \cdot (2 - 1.75 \cdot x). \]

- Differentiating this expression with respect to \(x \) and equating the derivative to 0 leads to

\[0.5 \cdot (2 - 1.75 \cdot x) + (0.5 \cdot x + 0.5) \cdot (-1.75) = 0. \]

- So, \(0.125 = 1.75 \cdot x \) and \(x = \frac{0.125}{1.75} = \frac{1/8}{7/4} = \frac{1}{14} \approx 0.07. \)

- The values \(a, n, \) etc., were kind of random.

- However, the resulting proportion of nuts snack in the food – about 7% – is quite reasonable.
23. Comment

• So why is everyone happy that the temptation was taken away?

• Because this allowed everyone not to violate their social contract.

• In this case, it is a social contract (as described by Nash’s bargaining solution) between:
 – a person now and
 – the same person in the future.
24. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1242122 (Cyber-ShARE Center of Excellence).