Why Geometric Progression in Selecting the LASSO Parameter: A Theoretical Explanation

William Kubin1, Yi Xie1, Laxman Bokati1, Vladik Kreinovich1, and Kittawit Autchariyapanitkul2

1Computational Science Program
University of Texas at El Paso
ElPaso, Texas 79968, USA
wkubin@miners.utep.edu, yxie3@miners.utep.edu, lbokati@miners.utep.edu, vladik@utep.edu

2Maejo University, Thailand, kittawit_a@mju.ac.th
1. Need for Regression

• In many real-life situations:
 – we know that the quantity y is uniquely determined by the quantities x_1, \ldots, x_n, but
 – we do not know the exact formula for this dependence.

• For example, in physics:
 – we know that the aerodynamic resistance increases with the body’s velocity, but
 – we often do not know how exactly.

• In economics:
 – we know that a change in tax rate influences the economic growth, but
 – we often do not know how exactly.
2. Need for Regression (cont-d)

- In all such cases, we need to find the dependence \(y = f(x_1, \ldots, x_n) \) between several quantities.

- This dependence must be determined based on the available data.

- We need to use previous observations \((x_{k1}, \ldots, x_{kn}, y_k)\) in each of which we know both:
 - the values \(x_{ki} \) of the input quantities \(x_i \) and
 - the value \(y_k \) of the output quantity \(y \).

- In statistics, determining the dependence from the data is known as *regression.*
3. Need for Linear Regression

- In most cases, the desired dependence is smooth – and usually, it can even be expanded in Taylor series.

- In many practical situations, the range of the input variables is small, i.e., we have $x_i \approx x_i^{(0)}$ for some $x_i^{(0)}$.

- In such situations, after we expand the desired dependence in Taylor series, we can:

 - safely ignore terms which are quadratic or of higher order with respect to the differences $x_i - x_i^{(0)}$ and

 - only keep terms which are linear in terms of these differences:

 $$y = f(x_1, \ldots, x_n) = c_0 + \sum_{i=1}^{n} a_i \cdot (x_i - x_i^{(0)}) .$$

- Here $c_0 \stackrel{\text{def}}{=} f(x_1^{(0)}, \ldots, x_n^{(0)})$ and $a_i \stackrel{\text{def}}{=} \frac{\partial f}{\partial x_i} |_{x_i = x_i^{(0)}}$.
4. Need for Linear Regression (cont-d)

- This expression can be simplified into:

\[y = a_0 + \sum_{i=1}^{n} a_i \cdot x_i, \text{ where } a_0 \overset{\text{def}}{=} c_0 - \sum_{i=1}^{n} a_i \cdot x_i^{(0)}. \]

- In practice, measurements are never absolutely precise.

- So, when we plug in the actually measured values \(x_{ki} \) and \(y_i \), we will only get an approximate equality:

\[y_k \approx a_0 + \sum_{i=1}^{m} a_i \cdot x_{ki}. \]

- Thus, the problem of finding the desired dependence can be reformulated as follows:

 - given the values \(y_k \) and \(x_{ki} \),

 - find the coefficients \(a_i \) for which the approximate equality holds for all \(k \).
5. The Usual Least Squares Approach

- We want each left-and side y_k of the approximate equality to be close to the corresponding right-hand side.
- In other words, we want the left-hand-side tuple (y_1, \ldots, y_K) to be close to the right-hand-sides tuple
 $$\left(\sum_{i=1}^{m} a_i \cdot x_{1i}, \ldots, \sum_{i=1}^{m} a_i \cdot x_{Ki} \right).$$
- It is reasonable to select a_i for which the distance between these two tuples is the smallest possible.
- Minimizing the distance is equivalent to minimizing the square of this distance, i.e., the expression
 $$\sum_{k=1}^{K} \left(y_k - \left(a_0 + \sum_{i=1}^{m} a_i \cdot x_{ki} \right) \right)^2.$$
- This minimization is know as the Least Squares method.
6. The Least Squares Approach (cont-d)

• This is the most widely used method for processing data.

• The corresponding values a_i can be easily found if:
 – we differentiate the quadratic expression with respect to each of the unknowns a_i and then
 – equate the corresponding linear expressions to 0.

• Then, we get an easy-to-solve systems of linear equations.
7. Discussion

- The above heuristic idea becomes well-justified:
 - when we consider the case when the measurement errors are normally distributed
 - with 0 mean and the same standard deviation σ
- This indeed happens:
 - when the measuring instrument’s bias has been carefully eliminated, and
 - most major sources of measurement errors have been removed.
- In such situations, the resulting measurement error is a joint effect of many similarly small error components.
- For such joint effects, the Central Limit Theorem states that the resulting distribution is close to Gaussian.
8. Discussion (cont-d)

• Once we know the probability distributions, a natural idea is to select the most probable values a_i.

• In other words, we select the values for which the probability to observe the values y_k is the largest.

• For normal distributions, this idea leads exactly to the least squares method.
9. Need to Go Beyond Least Squares

• Sometimes, we know that all the inputs x_i are essential to predict the value y of the desired quantity.

• In such cases, the least squares method works reasonably well.

• The problem is that in practice, we often do not know which inputs x_i are relevant and which are not.

• As a result, to be on the safe side, we include as many inputs as possible.

• Many of them will turn out to be irrelevant.

• If all the measurements were exact, this would not be a problem:
 – for irrelevant inputs x_i, we would get $a_i = 0$, and
 – the resulting formula would be the desired one.
10. Need to Go Beyond Least Squares (cont-d)

- However, because of the measurement errors, we do not get exactly 0s.

- Moreover, the more such irrelevant variables we add:
 - the more non-zero “noise” terms $a_i \cdot x_i$ we will have, and
 - the larger will be their sum.

- This will negatively affecting the accuracy of the formula,

- Thus, it will negative affect the accuracy of the resulting desired (non-zero) coefficients a_i.
11. LASSO Method

• We know that many coefficients will be 0; so, a natural idea is:
 – instead of considering all possible tuples
 \[a \overset{\text{def}}{=} (a_0, a_1, \ldots, a_n), \]
 – to only consider tuples for which a bounded number of coefficients is 0: \(\|a\|_0 \leq B \) for some constant \(B \).

• Here, \(\|a\|_0 \) (known as the \(\ell_0 \)-norm) denotes the number of non-zero coefficients in a tuple.

• The problem with this natural idea is that the resulting optimization problem becomes NP-hard.

• This means, crudely speaking, that:
 – no feasible algorithm is possible
 – that would always solve all the instances of this problem.
12. LASSO Method (cont-d)

- A usual way to solve such problem is:
 - by replacing the ℓ_0-norm with an ℓ_1-norm $\sum_{i=0}^{n} |a_i|$;
 - this norm is convex, therefore, the optimization problem is easier to solve.
- So:
 - instead of solving the problem of unconditionally minimizing the quadratic expression,
 - we minimize this expression under the constraint $\sum_{i=0}^{n} |a_i| \leq B$ for some constant B.
- This minimum can be attained when we have strict inequality or when the constraint becomes an equality.
- If the constraint is a strict inequality, then we have a local minimum.
13. LASSO Method (cont-d)

- For quadratic functions, a local minimum is exactly the global minimum that we try to avoid.

- Thus, we must consider the case when the constraint becomes an equality $\sum_{i=0}^{n} |a_i| = B$.

- The Lagrange multiplier method leads to minimizing the expression:

$$
\sum_{k=1}^{K} \left(y_k - \left(a_0 + \sum_{i=1}^{m} a_i \cdot x_{ki} \right) \right)^2 + \lambda \cdot \sum_{i=0}^{n} |a_i|.
$$

- This minimization is known as the *Least Absolute Shrinkage and Selection Operator* method – *LASSO*, for short.
14. How λ Is Selected: Main Idea

- The success of the LASSO method depends on what value λ we select.
- When λ is close to 0, we retain all the problems of the usual least squares method.
- When λ is too large, the λ-term dominates.
- So we select all the values $a_i = 0$, which do not provide any good description of the desired dependence.
- In different situations, different values λ will work best.
- The more irrelevant inputs we have:
 - the more important it is to deviate from the least squares, and
 - thus, the larger the parameter λ – that describes this deviation – should be.
15. How \(\lambda \) Is Selected: Main Idea (cont-d)

- We rarely know beforehand which inputs are relevant – this is the whole problem.
- So we do now know beforehand what value \(\lambda \) we should use.
- The best value \(\lambda \) needs to be decided based on the data.
- A usual way of testing any dependence is by randomly dividing the data into:
 - a (larger) training set and
 - a (smaller) testing set.
- We use the training set to find the value of the desired parameters (in our case, the parameters \(a_i \)).
- Then we use the testing set to gauge how good is the model.
16. How λ Is Selected: Main Idea (cont-d)

- To get more reliable results, we can repeat this procedure several times.

- In precise terms, we select several training subsets

 \[S_1, \ldots, S_m \subseteq \{1, \ldots, K\}. \]

- For each of these subsets S_j, we find the values $a_{ij}(\lambda)$ that minimize the functional

 \[
 \sum_{k \in S_j} \left(y_k - \left(a_0 + \sum_{i=1}^{m} a_i \cdot x_{ki} \right) \right)^2 + \lambda \cdot \sum_{i=0}^{n} |a_i|.
 \]

- We can then compute the overall inaccuracy, as

 \[
 \Delta(\lambda) \overset{\text{def}}{=} \sum_{j=1}^{m} \left(\sum_{k \notin S_j} \left(y_k - \left(a_{j0}(\lambda) + \sum_{i=1}^{m} a_{ji}(\lambda) \cdot x_{ki} \right) \right)^2 \right).
 \]

- We then select λ for which $\Delta(\lambda)$ is the smallest.
17. How \(\lambda \) Is Selected: Details

- In the ideal world, we should be able to try all possible real values \(\lambda \).

- However, there are infinitely many real numbers, and in practice, we can only test finitely many of them.

- Which set of values \(\lambda \) should we choose?

- Empirically, the best results are obtained if we use the values \(\lambda \) from a geometric progression \(\lambda_n = c_0 \cdot q^n \).

- Of course, a geometric progression also has infinitely many values, but we do not need to test all of them.

- Usually, as \(\lambda \) increases from 0, the value \(\Delta(\lambda) \) first decreases then increases again.

- So, it is enough to catch a moment when this value starts increasing.
18. How λ Is Selected: Details (cont-d)

- A natural question is: why geometric progression works best?
- In this talk, we provide a theoretical explanation for this empirical fact.
19. What Do We Want?

• At first glance, the answer is straightforward: we want to select a discrete set of values, i.e., a set

\[S = \{ \ldots < \lambda_n \lambda_{n+1} < \ldots \} \].

• However, a deeper analysis shows that the answer is not so simple.

• Indeed, what we are interested in is the dependence between the quantities \(y \) and \(x_i \).

• However, what we have to deal with is not the quantities themselves, but their numerical values.

• And the numerical values depend on what unit we choose for measuring these quantities; for example:
 - a person who is 1.7 m high is also 170 cm high,
 - an April 2020 price of 2 US dollars is the same as the price of \(2 \cdot 23500 = 47000 \) Vietnam Dong, etc.
20. What Do We Want (cont-d)

• In most cases, the choice of the units is rather arbitrary.
• It is therefore reasonable to require that the results of data processing should not depend on the unit.
• And hereby lies a problem.
• Suppose that we keep the same units for \(x_i \) but change a measuring unit for \(y \) to a one which is \(\alpha \) times smaller.
• In this case, the new numerical values of \(y \) become \(\alpha \) times larger: \(y \rightarrow y' = \alpha \cdot y \).
• To properly capture these new values, we need to increase the original values \(a_i \) by the same factor:

\[
a_i \rightarrow a'_i = \alpha \cdot a_i.
\]
21. What Do We Want (cont-d)

- In terms of these new values, the minimized expression takes the form

\[\sum_{k=1}^{K} \left(y'_k - \left(a'_0 + \sum_{i=1}^{m} a'_i \cdot x_{ki} \right) \right)^2 + \lambda \cdot \sum_{i=0}^{n} |a'_i|. \]

- Taking into account that \(y'_k = \alpha \cdot y_k \) and \(a'_i = \alpha \cdot a_i \), we get:

\[\alpha^2 \cdot \sum_{k=1}^{K} \left(y_k - \left(a_0 + \sum_{i=1}^{m} a_i \cdot x_{ki} \right) \right)^2 + \alpha \cdot \lambda \cdot \sum_{i=0}^{n} |a_i|. \]

- Minimizing an expression is the same as minimizing \(\alpha^{-2} \) times this expression, i.e., the modified expression

\[\sum_{k=1}^{K} \left(y_k - \left(a_0 + \sum_{i=1}^{m} a_i \cdot x_{ki} \right) \right)^2 + \alpha^{-1} \cdot \lambda \cdot \sum_{i=0}^{n} |a_i|. \]
• This new expression is similar to the original one, but with a new value of the LASSO parameter $\lambda' = \alpha^{-1} \cdot \lambda$.

• So, when we change the measuring units, the values of λ are also re-scaled – i.e., multiplied by a constant.

• What was the set $\{\lambda_n\}$ in the old units becomes the re-scaled set $\{\alpha^{-1} \cdot \lambda_n\}$ in the new units.

• This is, in effect, the same set but corresponding to different measuring units.

• So, we cannot say that one of these sets is better than the other, they clearly have the same quality.

• Thus, we cannot choose a single set S, we must choose a family of sets $\{c \cdot S\}_c$, where

$$c \cdot S \overset{\text{def}}{=} \{c \cdot \lambda : \lambda \in S\}.$$
23. Natural Uniqueness Requirement

• Eventually, we need to select some set \(S \).

• We cannot select one set a priori, since with every set \(S \), a set \(c \cdot S \) also has the same quality.

• To fix a unique set, we can, e.g., fix one of the values \(\lambda \in S \).

• Let us require that with this fixture, we will be end up with a unique optimal set \(S \).

• This means, in particular, that:

 – if we select a real number \(\lambda \in S \),

 – then the only set \(c \cdot S \) that contains this number will be the same set \(S \).

• Let us describe this requirement in precise terms.
24. Definitions and the Main Result

• A set $S \subseteq \mathbb{R}^+$ is called discrete if:

 – for every $\lambda \in S$,
 – there exists a $\varepsilon > 0$ such that $|\lambda - \lambda'| > \varepsilon$ for all other $\lambda' \in S$.

• For such sets, for each element λ:

 – if there are larger elements,
 – then there is the “next” element – i.e., the smallest element which is larger than λ.

• Similarly:

 – if there are smaller elements,
 – then there exists the “previous” element – i.e., the largest element which is smaller than λ.

• Thus, such sets have the form

 \[\{ \ldots < \lambda_{n-1} < \lambda_n < \lambda_{n+1} < \ldots \} \].
25. Definitions and the Main Result (cont-d)

- A discrete set S is called uniquely determined if for every $\lambda \in S$ and $c > 0$, if $\lambda \in c \cdot S$, then $c \cdot S = S$.

- Proposition. A set S is uniquely determined if and only if it is a geometric progression, i.e.:

$$S = \{c_0 \cdot q^n : n = \ldots, -2, -1, 0, 1, 2, \ldots\} \text{ for some } c_0 \text{ and } q.$$

- This results explains why geometric progression is used to select the LASSO parameter λ.
26. Proof

- It is easy to prove that every geometric progression is uniquely determined.
- Indeed, if for \(\lambda = c_0 \cdot q^n \), we have \(\lambda \in c \cdot S \), this means that \(\lambda = c \cdot c_0 \cdot q^m \) for some \(m \), i.e., \(c_0 \cdot q^n = c \cdot c_0 \cdot q^m \).
- Dividing both sides by \(c_0 \cdot q^m \), we conclude that \(c = q^{n-m} \) for some integer \(n - m \).
- Let us show that in this case, \(c \cdot S = S \).
- Indeed, each element \(x \) of the set \(c \cdot S \) has the form \(x = c \cdot c_0 \cdot q^k \) for some integer \(k \).
- Substituting \(c = q^{n-m} \) into this formula, we conclude that \(x = c_0 \cdot q^{k+(n-m)} \), i.e., that \(x \in S \).
- Similarly, we can prove that if \(x \in S \), then \(x \in c \cdot S \).
27. Proof (cont-d)

- Vice versa, let us assume that the set S is uniquely determined.
- Let us pick any element $\lambda \in S$ and denote it by λ_0.
- The next element we will denote by λ_1, the next to next by λ_2, etc.
- Similarly, the element previous to λ_0 will be denoted by λ_{-1}, previous to previous by λ_{-2}, etc.
- Thus, $S = \{\ldots, \lambda_{-2}, \lambda_{-1}, \lambda_0, \lambda_1, \lambda_2, \ldots\}$.
- Clearly, $\lambda_1 \in S$, and for $q \overset{\text{def}}{=} \lambda_1/\lambda_0$, we have $\lambda_1 \in q \cdot S$ – since $\lambda_1 = (\lambda_1/\lambda_0) \cdot \lambda_0 = q \cdot \lambda_0$ for $\lambda_0 \in S$.
- Since the set S is uniquely determined, this implies that $q \cdot S = S$.
- Since $S = \{\ldots, \lambda_{-2}, \lambda_{-1}, \lambda_0, \lambda_1, \lambda_2, \ldots\}$, we have
 $$q \cdot S = \{\ldots, q \cdot \lambda_{-2}, q \cdot \lambda_{-1}, q \cdot \lambda_0, q \cdot \lambda_1, q \cdot \lambda_2, \ldots\}.$$
28. Proof (cont-d)

- The sets S and $q \cdot S$ coincide.
- We know that $q \cdot \lambda_0 = \lambda_1$; thus:
 - the element next to $q \cdot \lambda_0$ in the set $q \cdot S$ – i.e., the element $c \cdot \lambda_1$,
 - must be equal to the element which is next to λ_1 in the set S, i.e., to the element λ_2:
 $$\lambda_2 = q \cdot \lambda_1.$$
- For next to next elements, we get $\lambda_3 = q \cdot \lambda_2$ and, in general, we get $\lambda_{n+1} = q \cdot \lambda_n$ for all n.
- This is exactly the definition of a geometric progression.
- The proposition is proven.
29. Discussion

- Machine learning (e.g., deep learning) uses the gradient method \(x_{i+1} = x_i - \lambda_i \cdot \frac{\partial J}{\partial x_i} \) to minimize \(J \).

- Empirically the best strategy for selecting \(\lambda_i \) also follows approximately a geometric progression.

- For example, some algorithms use:
 - \(\lambda_i = 0.1 \) for the first ten iterations,
 - \(\lambda_i = 0.01 \) for the next ten iterations,
 - \(\lambda_i = 0.001 \) for the next ten iterations, etc.

- In this case, similarly, re-scaling of \(J \) is equivalent to re-scaling of \(\lambda \).

- Thus, we need to have a family of sequences \(\{c \cdot \lambda_i\} \) corresponding to different \(c > 0 \).

- A natural uniqueness requirement – as we have shown – leads to the geometric progression.
30. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1242122 (Cyber-ShARE Center of Excellence).