Reward for Good Performance Works Better Than Punishment for Mistakes: Economic Explanation

Olga Kosheleva1, Julio Urenda2,3, and Vladik Kreinovich3
1Department of Teacher Education
2Department of Mathematical Sciences
3Department of Computer Science
University of Texas at El Paso
500 W. University
El Paso, TX 79968, USA
olgak@utep.edu, jcurenda@utep.edu, vladik@utep.edu
1. Reward vs. Punishment: An Important Economic Problem

- One of the most important issues in economics is how to best stimulate people’s productivity.
- What is the best combination of reward and punishment that makes people perform better.
- This problem rises not only in economics, it appears everywhere.
- How do we stimulate students to study better?
- How do we stimulate our own kids to behave better?
2. Empirical Fact

• A lot of empirical studies were done on this topic.
• Some of these studies were made by Nobelist Daniel Kahneman – one of the fathers of behavioral economics.
• Most confirm that reward for good performance, in general, works better than punishment for mistakes.
• But why?
• Like many facts from behavioral economics, this fact does not have a convincing theoretical explanation.
• In this talk, we provide a theoretical explanation for this empirical phenomenon.
3. What People Want

- People spend some efforts e.
- Based on results of these efforts, they get a reward $r(e)$.
- In the first approximation, we can say that the overall gain is the reward minus the efforts: $r(e) - e$.
- A natural economic idea is that every person wants to maximize his/her gain, i.e., maximize $r(e) - e$; so:
 - to explain why rewards work better than punishments,
 - we need to analyze what are the reward functions $r(e)$ corr. to the two reward strategies.
- We will use simplified “first approximation” models, providing qualitative understanding of the situation.
4. What Reward Function Corresponds to Rewarding Good Performance

• What does rewarding good performance mean?

• On the one hand:

 – if the performance is not good, i.e., if the effort e is smaller than the smallest needed effort e_0,

 – there is practically no reward: $r(e) = r_+$ for some $r_+ \approx 0$.

• On the other hand:

 – the more effort the person uses, the larger the reward;

 – so, every effort beyond e_0 is proportionally rewarded, i.e., $r(e) = r_+ + c_+ \cdot (e - e_0)$, for some c_+.
5. Rewarding Good Performance (cont-d)

- The constant c_+ depends on the units used for measuring effort and reward:
 - one unit of effort corresponds to c_+ units of reward.
- These two formulas can be combined into a single formula

$$r(e) = r_+ + \max(0, c_+ \cdot (e - e_0)) = r_+ + c_+ \cdot \max(0, e - e_0).$$
6. Rewarding Good Performance (cont-d)

- This dependence has the following form:

\[r(e) \]

![Graph showing the relationship between r(e) and e, with a step function.]
7. What Can We Say About This Function

- It is easy to see that our function is *convex*.
- This means that for all $e' < e''$ and for each $\alpha \in [0, 1]$, we have

$$r(\alpha \cdot e' + (1 - \alpha) \cdot e'') \leq \alpha \cdot r(e') + (1 - \alpha) \cdot r(e'').$$
8. What Reward Function Corresponds to Punishing for Mistakes

• What does punishing for mistakes means?

• On the one hand:
 – if the performance is good, i.e., if the effort $e \geq e_0$, then there is no punishment, i.e., the reward remains the same: $r(e) = r_-$ for some constant r_-;

• On the other hand:
 – the fewer effort the person uses, the most mistakes he/she makes,
 – so the larger the punishment and the smaller the resulting reward;
 – so, every effort below e_0 is proportionally penalized, i.e., $r(e) = r_- - c_- \cdot (e_0 - e)$, for some c_-.

9. Punishing for Mistakes (cont-d)

- The constant c_- depends on the units used for measuring effort and reward:
 - one unit of effort corresponds to c_- units of reward.
- These two formulas can be combined into a single formula

$$r(e) = r_- - c_- \cdot \max(0, e_0 - e) = r_- + c_- \cdot \min(0, e - e_0).$$
10. Punishing for Mistakes (cont-d)

- This dependence has the following form:

\[r(e) \]

\[e \]
11. What Can We Say About This Function

- It is easy to see that this function is *concave*.
- This means that for all $E' < E''$ and for each $\alpha \in [0, 1]$, we have
 \[r(\alpha \cdot e' + (1 - \alpha) \cdot e'') \geq \alpha \cdot r(e') + (1 - \alpha) \cdot r(e''). \]
- Now, we are ready to present the desired explanation.
12. Known Properties of Convex and Concave Functions: Reminder

• It is known that:
 – every linear function is both convex and concave;
 – the sum of two convex functions is convex, and
 – the sum of two concave functions is concave.

• In particular, the linear function \(f(e) = -e \) is both convex and concave, thus:
 – when the function \(r(e) \) is convex, the sum \(r(e) + (-e) = r(e) - e \) is also convex; and
 – when the function \(r(e) \) is concave, the sum \(r(e) + (-e) = r(e) - e \) is also concave.
13. Convex and Concave Functions (cont-d)

• It is also known that:
 – for a convex function, the maximum on an interval is always attained at one of the endpoints;
 – for a concave function, its maximum on an interval is always attained at some point inside the interval.
14. Resulting Explanation

• A person selects the effort e_0 for which the expression $r(e) - e$ attains its largest possible value.

• Of course, people’s abilities are not unbounded, there are certain limits within which we can apply the efforts.

• Thus, possible value of the effort e are located within some interval $[e, \bar{e}]$.

• When we reward for good performance, the corresponding function $r(e)$ is convex.

• Thus the difference $r(e) - e$ is convex.

• Therefore, the selected value e_0 coincides either with \underline{e} or with \bar{e}.

• We can dismiss the case $e_0 = \underline{e}$ when the reward is so small that it is not worth spending any effort.
15. Resulting Explanation (cont-d)

- So, we can conclude that $e_0 = \bar{e}$, i.e., the person selects the largest possible effort.
- This is exactly what we wanted to achieve.
- On the other hand, when we punish for mistakes, the corresponding function $r(e)$ is concave.
- Thus the difference $r(e) - e$ is concave.
- Therefore, the selected value e_0 is always located inside the interval $[\underline{e}, \bar{e}]$: $e_0 < \bar{e}$.
- Thus, the person will not select the largest possible effort – which is exactly what we wanted to avoid.
- This indeed explains why rewarding for good performance works better than punishment for mistakes.
16. Discussion

- What if we have both reward for good performance and punishment for mistakes, i.e.,

$$r(e) = \text{const} + c_+ \cdot \max(0, e - e_0) + c_- \cdot \min(0, e - e_0)?$$

- In this case, for $c_+ > c_-$, the function is still convex, i.e., we still get a very good performance.

- However, if $c_- > c_+$, the function becomes concave, and the performance suffers.

- Thus, to get good results, reward must be larger than punishment.
17. Discussion (cont-d)

- It is worth mentioning that:
 - the optimal rewarding function
 \[r(e) = r_+ + c_+ \cdot \max(0, e - e_0), \]
 - in effect, coincides (modulo linear transformations of input and output)
 - with the efficient “rectified linear” activation function \(r(e) = \max(0, e) \) used in deep learning.
- So, not only people learn better when we use this function – computers learn better too!
18. Acknowledgments

This work was supported in part by the National Science Foundation grants:

- 1623190 (A Model of Change for Preparing a New Generation for Professional Practice in Computer Science),
- HRD-1242122 (Cyber-ShARE Center of Excellence).