Computing With Tensors: Potential Applications of Physics-Motivated Mathematics to Computer Science

Martine Ceberio and Vladik Kreinovich
Department of Computer Science
University of Texas at El Paso
El Paso, TX 79968, USA
emails mceberio@cs.utep.edu
vladik@utep.edu
1. Why Tensors

- *Modern computing* – main problems include:
 - large amounts of data;
 - long time required to process this data.

- *Similar situation* – 19 century physics:
 - large amounts of data;
 - long time required to process this data.

- *How the problem was solved then*: by using tensors

- *Natural idea*: let us use tensors to solve the problems with modern computing.
2. 19 Century Physics

• Physics starts with measuring and describing the values of different physical quantities.

• It goes on to equations which enable us to predict the values of these quantities.

• A measuring instrument usually returns a single numerical value.

• For some physical quantities (like mass \(m \)), the single measured value is sufficient to describe the quantity.

• For other quantities, we need several values.

• *Example:* three components \(E_x, E_y, \) and \(E_z \) describe the electric field.

• *Example:* to describe the tension inside a solid body, we need values \(\sigma_{ij} \).

\[\]
3. Problem and How Tensors Helped

- **19 century:** a separate equation for each component of the field.
- **Result:** equations cumbersome and difficult to solve.
- **Idea:** to describe all the components of a physical field as a single mathematical object:
 - a vector a_i,
 - or, more generally, a tensor a_{ij}, a_{ijk}, \ldots
- **Result:** simplified equations, faster computations.
- **Originally:** mostly vectors (rank-1 tensors) were used.
- **20 century:**
 - matrices (rank-2 tensors) in quantum physics,
 - higher-order tensors such as the rank-4 curvature tensor R_{ijkl} in relativity theory.
4. From Tensors in Physics to Computing with Tensors

- **Reminder:**
 - 19 century physics encountered a problem of too much data;
 - tensors helped.
- **Modern computing:** suffers from a similar problem.
- **Natural idea:** tensors can help.
- **Two examples** justifying our optimism:
 - modern algorithms for fast multiplication of large matrices;
 - quantum computing.
- **Comment:** detailed descriptions of these examples follow.
5. Modern Algorithm for Multiplying Large Matrices

- **Definition:**
 \[
 \begin{pmatrix}
 a_{11} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{nn}
 \end{pmatrix}
 \begin{pmatrix}
 b_{11} & \cdots & b_{1n} \\
 \vdots & \ddots & \vdots \\
 b_{n1} & \cdots & b_{nn}
 \end{pmatrix}
 =
 \begin{pmatrix}
 c_{11} & \cdots & c_{1n} \\
 \vdots & \ddots & \vdots \\
 c_{n1} & \cdots & c_{nn}
 \end{pmatrix},
 \]
 \[
 c_{ij} = a_{i1} \cdot b_{1j} + \cdots + a_{ik} \cdot b_{kj} + \cdots + a_{in} \cdot b_{nj}.
 \]

- **Problem:** for large \(n \), no space for both \(A \) and \(B \) in the fast (cache) memory.

- **Result:** lots of time-consuming data transfers ("cache misses") between different parts of the memory.

- **Solution:** represent each matrix as a matrix of blocks:
 \[
 A = \begin{pmatrix}
 A_{11} & \cdots & A_{1m} \\
 \vdots & \ddots & \vdots \\
 A_{m1} & \cdots & A_{mm}
 \end{pmatrix},
 \]
 \[
 C_{\alpha\beta} = A_{\alpha1} \cdot B_{1\beta} + \cdots + A_{\alpha\gamma} \cdot B_{\gamma\beta} + \cdots + A_{\alpha m} \cdot B_{m\beta}.
 \]
6. Modern Algorithm for Multiplying Large Matrices: Tensor Interpretation

- **Main idea:**
 - we start with a large matrix A of elements a_{ij};
 - we represent it as a matrix consisting of block sub-matrices $A_{\alpha\beta}$.

- **Tensor interpretation:**
 - each element of the original matrix is now represented as
 - an (x, y)-th element of a block $A_{\alpha\beta}$,
 - i.e., as an element of a rank-4 tensor $(A_{\alpha\beta})_{xy}$.

- **Fact:** an increase in rank improves efficiency.

- **Analogy:** a representation of a rank-1 vector as a rank-2 spinor works in relativistic quantum physics.
7. Quantum Computing as Computing with Tensors

- **Classical bit**: a system with two states 0 and 1.
- **Quantum bit (qubit)**: superposition principle – we can have states $c_0 \cdot |0\rangle + c_1 \cdot |1\rangle$.
- **Probabilities**: $\text{Prob}(0) = |c_0|^2$ and $\text{Prob}(1) = |c_1|^2$, hence $|c_0|^2 + |c_1|^2 = 1$.
- **n-(qu)bit system**: a general state is $c_{00} \cdot |0 \ldots 00\rangle + c_{01} \cdot |0 \ldots 01\rangle + \ldots + c_{11} \cdot |1 \ldots 11\rangle$.
- **Conclusion**: each state is a tensor $c_{i_1 \ldots i_n}$ of rank n.
- **Advantage**: store the entire tensor in only n (qu)bits.
- **Resulting efficiency of quantum computing**:
 - search in an unsorted array of size n in \sqrt{n} time (Grover);
 - factoring large integers in polynomial time (Shor).
8. New Idea: Tensors to Describe Constraints

- *A general constraint* between n real-valued quantities is a subset $S \subseteq \mathbb{R}^n$.

- *A natural idea:* represent this subset block-by-block – by enumerating sub-blocks that contain elements of S.

- *Fact:* each block $b_{i_1 \ldots i_n}$ can be described by n indices i_1, \ldots, i_n.

- *Result:* we can describe a constraint by a boolean-valued tensor $t_{i_1 \ldots i_n}$ for which:
 - $t_{i_1 \ldots i_n} = \text{“true”}$ if $b_{i_1 \ldots i_n} \cap S \neq \emptyset$; and
 - $t_{i_1 \ldots i_n} = \text{“false”}$ if $b_{i_1 \ldots i_n} \cap S = \emptyset$.

- *Fact:* processing such constraint-related sets can also be naturally described in tensor terms.

- *Fact:* this speeds up computations.
9. Computing with Tensors Can Also Help Physics

• So far: we have shown that tensors can help computing.

• New idea: relation between tensors and computing can also help physics.

• Example: Kaluza-Klein-type high-dimensional space-time models of modern physics.

• Einstein’s idea: use “tensors” with integer or circular values.

• From the mathematical viewpoint: such “tensors” are unusual.

• In computer terms: integer or circular data types are very natural.

• Fact: integers and circular data are even more efficient to process than standard real numbers.
10. Remaining Open Problem

- **Example:** tensors naturally appear in an efficient Taylor series approach to uncertainty propagation.

- **Detail:** the dependence of the result y on the inputs x_1, \ldots, x_n is approximated by the Taylor series:

$$y = c_0 + \sum_{i=1}^{n} c_i \cdot x_i + \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \cdot x_i \cdot x_j + \ldots$$

- **Specifics:** the resulting tensors $c_{i_1 \ldots i_r}$ are symmetric: $c_{i_1 \ldots i_r} = c_{\pi(i_1) \ldots \pi(i_r)}$ for each permutation π.

- **Result:** the standard computer representation leads to a $r!$ duplication.

- **Problem:** how to decrease this duplication.
11. Acknowledgments

This work was supported in part:

• by NSF grant HRD-0734825 and

• by Grant 1 T36 GM078000-01 from the National Institutes of Health.

The authors are thankful to Lenore Mullin for her encouragement.