How to Best Process Data If We Have Both Absolute and Relative Measurement Errors: A Pedagogical Comment

Ana Maria Hernandez Posada1, Maria Isabel Olivarez1, Christian Servin2, and Vladik Kreinovich1

1Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA
Computer Science and IT Program, El Paso Community College
amhernandezegias@miners.utep.edu, miolivares@miners.utep.edu
servin1@epcc.edu, vladik@utep.edu
1. Formulation of the Problem

- In many practical situations, we need to find the dependence of a quantity y on quantities $x = (x_1, \ldots, x_n)$.
- Usually, we know the type of the dependence, i.e., we know that $f = f(p, x)$ for some parameters
 \[p = (p_1, \ldots, p_m). \]
- We just need to find p.
- For example, the dependence may be linear, then
 \[f(x, p) = \sum_{i=1}^{n} p_i \cdot x_i + p_{n+1}. \]
- To find this dependence, we measure x_i and y in several situations k.
- Then, we find p for which $f(p, x^{(k)}) \approx y^{(k)}$ for all k.
2. Formulation of the Problem (cont-d)

- The measurement error is often caused by a large number of independent factors of about the same size,
- In this case the Central Limit Theorem implies that it is normally distributed.
- Usually, it is assumed that the bias is 0, so we only have standard deviation σ.
- Sometimes, we have absolute error $\sigma = \text{const}$, in which case we use the usual Least Squares method
 \[
 \sum_{k} (y^{(k)} - f(p,x^{(k)}))^2 \rightarrow \min.
 \]
- In other cases, we have relative error, in which case we find p for which
 \[
 \sum_{k} \frac{(y^{(k)} - f(p,x^{(k)}))^2}{(y^{(k)})^2} \rightarrow \min.
 \]
3. Formulation of the Problem (cont-d)

• In practice, we usually have both absolute and relative error components.

• Namely, \(\Delta y = \Delta y_{\text{abs}} + \Delta y_{\text{rel}} \), with \(\sigma_{\text{abs}} = \sigma_0 \) and \(\sigma_{\text{rel}} = \sigma_1 \cdot |y| \) for some \(\sigma_i \).

• How should we then process data?
4. Recommendation

- In this case, the variance of the measurement error if \(\sigma^2 = \sigma_0^2 + \sigma_1^2 \cdot y^2 \).
- So, we use Maximum Likelihood method and maximize the expression

\[
\prod_k \frac{1}{\sqrt{2\pi} \cdot \sqrt{\sigma_0^2 + \sigma_1^2 \cdot (y(k))^2}} \cdot \exp \left(-\frac{(y(k) - f(p, x(k)))^2}{2(\sigma_0^2 + \sigma_1^2 \cdot (y(k))^2)} \right).
\]
- In this talk, we present an iterative algorithm for finding \(p \).
5. Algorithm

- The above problem is complex, so what we can do is solve it iteratively.
- First, we assume that $\sigma_1 = 0$.
- Then, we compute $(\sigma^{(k)})^2 = \sigma_0^2 + \sigma_1^2 \cdot (y^{(k)})^2$.
- After that, we use the Least Squares and find p that minimizes $\sum_k \frac{(y^{(k)} - f(p, x^{(k)}))^2}{(y^{(k)})^2}$.
- Once we find these values p, we again use the Least Squares to find the values σ_0^2 and σ_1^2 for which
 \[(y^{(k)} - f(p, x^{(k)}))^2 \approx \sigma_0^2 + \sigma_1^2 \cdot (y^{(k)})^2. \]
- Then, we again compute $(\sigma^{(k)})^2$, find p, etc., until the process converges.