Expert Knowledge Makes Predictions More Accurate: Theoretical Explanation of an Empirical Observation

Julio Urenda1,2, Marco Cardiel2, Laura Hinojos2, Oliver Martinez2, and Vladik Kreinovich2

1Department of Mathematical Sciences
2Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA
jcurenda@utep.edu, macardiel@miners.utep.edu, ljhinojos@miners.utep.edu, omartinez14@miners.utep.edu, vladik@utep.edu
1. Empirical Observation That Needs Explaining

- It is known that the use of expert knowledge makes predictions more accurate.
- For example, computer-based meteorological forecasts are regularly corrected by experts.
- A typical improvement is that the accuracy consistently improves by 10%.
- How can we explain this?
2. Towards an Explanation

• Use of expert knowledge means, in effect, that we combine:
 – an estimate produced by a computer model and
 – an expert estimate.

• Let σ_m and σ_e denote the standard deviations, correspondingly, of the model and of the expert estimate.

• In effect, the only information that we have about comparing the two accuracies is that
 – expert estimates are usually less accurate
 – than model results:

\[\sigma_m < \sigma_e. \]

• So, if we fix σ_e, then the only thing we know about σ_m is that σ_m is somewhere between 0 and σ_e.
3. Towards an Explanation (cont-d)

• We have no reason to assume that some values from the interval \([0, \sigma_e]\) are more probable than others.

• Thus, it makes sense to assume that all these values are equally probable.

• So, we have a uniform distribution on this interval.

• For this uniform distribution, the average value of \(\sigma_m\) is equal to \(0.5 \cdot \sigma_e\).

• Thus, we have \(\sigma_e = 2 \cdot \sigma_m\).

• In general:

 – if we combine two estimates \(x_m\) and \(x_e\) with accuracies \(\sigma_m\) and \(\sigma_e\),

 – then the combined estimate \(x_c\) is obtained by minimizing the sum \(\frac{(x_m - x_c)^2}{\sigma_m^2} + \frac{(x_e - x_c)^2}{\sigma_e^2}\).
4. Towards an Explanation (cont-d)

- The resulting estimate is \(x_c = \frac{x_m \cdot \sigma_m^{-2} + x_e \cdot \sigma_e^{-2}}{\sigma_m^{-2} + \sigma_e^{-2}} \), with accuracy \(\sigma_c^2 = \frac{1}{\sigma_m^{-2} + \sigma_e^{-2}} \).

- For \(\sigma_e = 2\sigma_m \), we have \(\sigma_e^{-2} = 0.25 \cdot \sigma_m^{-2} \), thus \(\sigma_c^2 = \sigma_m^2 \cdot \frac{1}{1 + 0.25} = \sigma_m^2 \cdot \frac{1}{1.25} = 0.8 \cdot \sigma_m^2 \), thus \(\sigma_c \approx 0.9 \cdot \sigma_m \).

- So we indeed get a 10% increase in the resulting prediction.
5. Reference