How to Make a Decision
Under Set Uncertainty

Laxman Bokati1, Srialekya Edupalli2, Mannyboy Flores2,
Oscar Ibarhuen2, Fernando Serrano2, Vladik Kreinovich1,2
1Computational Science Program
2Department of Computer Science
University of Texas at El Paso, El Paso, TX 79968, USA,
lbokati@miners.utep.edu, sedupalli@miners.utep.edu,
mlflores2@miners.utep.edu, olibarhuen@miners.utep.edu,
fjserrano@miners.utep.edu, vladik@utep.edu

- To describe people’s preferences, it is convenient to assign a number called *utility* to each alternative, so that:
 - to better alternatives
 - we assign larger numbers.

- Then, we can select the alternative with the largest possible utility value.

- In practice, we rarely know the exact consequences of each action.

- So instead of the exact utility, we get a set \(S \) of possible values of utility.

- Without losing generality, we can assume that the set \(S \) is closed, i.e., that it contains all its limit points.
2. Decisions Under Set Uncertainty (cont-d)

- It turns out that it is reasonable to select an alternative that maximizes its **Hurwicz value**

\[H(S) \overset{\text{def}}{=} \alpha \cdot \sup S + (1 - \alpha) \cdot \inf S. \]

- Here the parameter \(\alpha \in [0, 1] \) describes the person’s degree of optimism:
 - complete optimists correspond to \(\alpha = 1 \),
 - complete pessimists to \(\alpha = 0 \), and
 - everyone else to intermediate values of \(\alpha \).

- When two sets has the same Hurwicz value, then:
 - for most people (namely, for risk-averse ones),
 - it is reasonable to select the alternative for which the interval \([\inf S, \sup S]\) is the narrowest.
3. Formulation of the Problem

- But what if we have two sets:
 - with the same Hurwicz value and the same width,
 - i.e., for which the infimum and the supremum are the same?
- Traditional decision theory treats them as equally good.
- However, intuitively, a set \{0, 0.9, 1\} is better than \{0, 0.1, 1\}.
- Indeed, the first and third options are the same, but the second option is better for the second set.
- How can we describe this intuitive idea?
- In this talk, we show how to do it for finite sets.
4. Our Idea: Case of Finite Sets

- Let us pick an interval \([a, \bar{a}]\) and consider all sets for which \(\inf S = a\) and \(\sup S = \bar{a}\).
- How do we compare two such sets \(S_1\) and \(S_2\)?
- Let us first consider the case when both \(S_i\) are different from \(\{a, \bar{a}\}\).
- Then each set \(S_i\) is obtained by adding some elements to this 2-element set, i.e., we have
 \[
 S_i = \{a, \bar{a}\} \cup A_i, \text{ where } A_i \subseteq (a, \bar{a}).
 \]
- It is therefore reasonable to select the set \(S_i\) for which the subset \(A_i\) is preferable – i.e.,
 \[
 - \text{ either has larger Hurwicz value,}
 - \text{ or has same Hurwicz value and is narrower,}
 - \text{ or is better according to our new criterion.}
 \]
5. Our Idea: Case of Finite Sets (cont-d)

- If one of the sets – e.g., S_1 – is equal to $\{a, \overline{a}\}$, then:
 - if $H(A_2) < H(\{a, \overline{a}\})$, this means that in S_2, we add a worse alternative to $\{a, \overline{a}\}$;
 - thus, S_1 is better.

- If $H(A_2) > H(\{a, \overline{a}\})$, then similarly S_2 is better.

- If $H(A_2) = H(\{a, \overline{a}\})$, then A_2 is better than $\{a, \overline{a}\}$ – since it is narrower.

- So also S_2 is better.

- This way, for every two finite sets S_i, we:
 - either decide which is better
 - or reduce the problem to comparing sets with fewer elements.

- Since we consider finite sets, this procedure will eventually stop and we will decide which set is better.
6. General Case

- In general, when sets S_i can be infinite.

- We can consider, for each n, $\left(\frac{1}{n}\right)$-approximations $S_{1,n}$ and $S_{2,n}$ to these sets.

- These sets are formed by elements $\frac{k}{n}$, where $k = \text{round}(n \cdot u)$ for some $u \in S_i$.

- If $S_{1,n}$ is better than $S_{2,n}$ for all sufficiently large n, then we say that S_1 is better than S_2.

- Similarly, we can explain when S_2 is better than S_1.
7. References
