“And”- and “Or”-Operations for “Double”, “Triple”, etc. Fuzzy Sets

Hung T. Nguyen¹,², Olga Kosheleva³, and Vladik Kreinovich³

¹Department of Mathematical Sciences, New Mexico State University
Las Cruces, NM, 88003, USA, hunguyen@nmsu.edu
²Department of Economics, Chiang Mai University, Thailand
³University of Texas at El Paso, El Paso, TX 79968, USA
olgak@utep.edu, vladik@utep.edu
1. Outline

• In the traditional fuzzy logic:
 – the expert’s degree of confidence \(d(A \& B) \) in a complex statement \(A \& B \)
 – is uniquely determined by his/her degrees of confidence \(d(A) \) and \(d(B) \) in the statements \(A \) and \(B \).

• In practice, for the same degrees \(d(A) \) and \(d(B) \), we may have different degrees \(d(A \& B) \).

• The best way to take this relation into account is to explicitly elicit the corresponding degrees \(d(A \& B) \).

• If we only elicit information about pairs of statements, then we still need to estimate, e.g., the degree \(d(A \& B \& C) \).

• In this talk, we explain how to produce such “and”-operations for “double” fuzzy sets.
2. Traditional Fuzzy Techniques: A Brief Reminder

- Experts often describe their knowledge by using imprecise ("fuzzy") words like "small" or "fast".

- We need to describe this knowledge in computer understandable terms.

- A natural idea is to assign degrees of certainty \(d(S) \in [0, 1] \) to expert statements \(S \).

- We can ask an expert to mark his/her degree of certainty by a mark \(m \) on a scale from 0 to \(n \), and take \(d(S) = m/n \).

- We can also poll \(n \) experts; if \(m \) of them think that \(S \) is true, we take \(d(S) = m/n \).
3. Need for “And’- and “Or”-Operations

- We use expert knowledge to answer queries.
- The answer to a query Q usually depends on several statements.
- What is $d(Q)$?
- For example, Q holds if either S_1 and S_2 hold, or if S_3, S_3, and S_5 hold.
- Thus, to estimate $d(Q)$, we must estimate the degree of certainty in propositional combinations like
 $$(S_1 \& S_2) \lor (S_3 \& S_4 \& S_5).$$
- Ideally, we should ask the expert’s opinion about all such combinations.
- However, for n statements, we have 2^n such combinations, so we cannot ask about all of them.
4. Need for “And’- and “Or”-Operations (cont-d)

- We cannot ask the expert about degree of certainty in all possible propositional combinations.

- It is therefore necessary to estimate \(d(A \& B) \) based on \(d(A) \) and \(d(B) \).

- The estimate \(f_\& (a, b) \) for \(d(A \& B) \) based on \(a = d(A) \) and \(b = d(B) \) is known as an “and”-operation (\(t \)-norm).

- Similarly, we need an “or”-operation \(f_\lor (a, b) \) and a negation operation \(f_\neg (a) \).

- The most widely used operations are:

\[
\begin{align*}
 f_\& (a, b) &= \min(a, b), & f_\& (a, b) &= a \cdot b, \\
 f_\lor (a, b) &= \max(a, b), & f_\lor (a, b) &= a + b - a \cdot b, \\
 f_\neg (a) &= 1 - a.
\end{align*}
\]
5. Need to Go Beyond Traditional Fuzzy

- In the traditional fuzzy techniques, we base our estimate of $d(A \& B)$ only on $d(A)$ and $d(B)$.
- In reality, for the same degrees of belief in A and B, we may have different degrees of belief in $A \& B$.
 - *Example 1*: if $d(A) = 0.5$, then $d(\neg A) = 1 - 0.5 = 0.5$.
 - For $B = A$, $d(A) = d(B) = 0.5$ and $d(A \& B) = d(A) = 0.5$.
 - For $B = \neg A$, $d(A) = d(B) = 0.5$ and $d(A \& B) = 0$.
 - *Example 2*: $d(50\text{-year-old is old}) = 0.1$, $d(60\text{-year-old is old}) = 0.8$, so $d_0 \overset{\text{def}}{=} d(50\text{-year-old is old} \& 60\text{-year-old is not old}) = \min(0.1, 1 - 0.2) > 0$ for $\min(a, b)$ and $a \cdot b$.
- However, intuitively, $d_0 = 0$.
6. A Natural Idea

- A natural solution to the above problem is to explicitly elicit and store:
 - not only the expert’s degree of confidence $\mu_P(x)$ that a given value x satisfies the property P
 - but also the degree of confidence $\mu_{PP}(x, x')$ that both x and x' satisfy the property P.

- In this approach, to describe a property, we need two functions:
 - a function $\mu_P : X \to [0, 1]$, and
 - a function $\mu_{PP} : X \times X \to [0, 1]$ for which
 $$\mu_{PP}(x, x') = \mu_{PP}(x', x) \quad \text{and} \quad \mu_{PP}(x, x') \leq \mu_P(x).$$

- Since we need two functions, it is natural to call such pairs (μ_P, μ_{PP}) double fuzzy sets.

- We can also ask about the triples (x, x', x'') etc.
7. We Need to Extend “And”- and “Or”-Operations to “Double”, “Triple” etc. Fuzzy Sets

- If we explicitly elicit \(d(A \& B) \), we do not need the usual “and”-operation.

- However, we still need to estimate \(d(A \& B \& C) \) based on the available values:

 \[d(A), \ d(B), \ d(C), \ d(A \& B), \ d(A \& C), \ d(B \& C). \]

- We will show that:
 - the ideas behind the most popular t-norms and t-conorms
 - can be used describe the desired “and”- and “or”-operations for the “double” fuzzy sets.
8. “And”-Operations in Traditional Fuzzy Logic: Reminder

- Traditionally, expert’s degrees of certainty are also called subjective probabilities.

- In probabilistic terms:
 - we know the probabilities \(p(s_1) \) and \(p(s_2) \) of two statements \(s_1 \) and \(s_2 \);
 - we want to estimate the probability \(p(s_1 \& s_2) \).

- Depending on the dependence between \(s_1 \) and \(s_2 \), we may have different values of \(p(s_1 \& s_2) \).

- There are two main approaches to deal with this non-uniqueness:
 - we can find the range of all possible values \(p(s_1 \& s_2) \);
 - or we can select a single “most probable” value \(p(s_1 \& s_2) \).
9. Inequalities (Linear Programming) Approach

- We need to know the probabilities of all basic combinations \(s_1 \& s_2, s_1 \& \neg s_2, \neg s_1 \& s_2, \) and \(\neg s_1 \& \neg s_2. \)
- We know \(d_1 = p(s_1) \) and \(d_2 = p(s_2); \) based on \(x \overset{\text{def}}{=} p(s_1 \& s_2), \) we get:

\[
\begin{align*}
p(s_1 \& \neg s_2) &= p(s_1) - p(s_1 \& s_2) = d_1 - x, \\
p(\neg s_1 \& s_2) &= p(s_2) - p(s_1 \& s_2) = d_2 - x, \quad \text{and} \\
p(\neg s_1 \& \neg s_2) &= 1 - p(s_1) - p(s_2) + p(s_1 \& s_2) = 1 - d_1 - d_2 + x.
\end{align*}
\]
- All the basic probabilities must be non-negative:

\[
x \geq 0; \quad d_1 - x \geq 0; \quad d_2 - x \geq 0; \quad 1 - d_1 - d_2 + x \geq 0, \quad \text{i.e.,} \\
x \geq 0; \quad x \leq d_1; \quad x \leq d_2; \quad x \geq d_1 + d_2 - 1.
\]
- So, the range of possible values is

\[
\max(d_1 + d_2 - 1, 0) \leq x \leq \min(d_1, d_2).
\]
- Both endpoints serve as possible t-norms.
10. Maximum Entropy (MaxEnt) Approach

- Often, we do not know the exact probabilities.
- It is reasonable not to hide uncertainty, i.e., select a distribution with the largest uncertainty.
- There are reasonable arguments that uncertainty of a probability distribution is best described by its entropy
 \[S = -\sum p_i \cdot \ln(p_i). \]

- Here, \(p_i = x, d_1 - x, d_2 - x, \) and \(1 - d_1 - d_2 + x, \) so
 \[S = -x \cdot \ln(x) - (d_1 - x) \cdot \ln(d_1 - x) - (d_2 - x) \cdot \ln(d_2 - x) - (1 - d_1 - d_2 + x) \cdot \ln(1 - d_1 - d_2 + x). \]
- Maximizing \(S \) results in \(x = d_1 \cdot d_2. \)
- For “or”, inequalities approach leads to
 \[\max(a, b) \leq x \leq \min(a + b, 1). \]
- For “or”, MaxEnt leads to \(d_1 + d_2 = d_2 \cdot d_2. \)
11. “And”-Operations for “Double” Fuzzy Sets

- We know $d_i = p(s_i)$ and $d_{ij} = p(s_i \& s_j)$, $1 \leq i, j \leq 3$.

- From $x = p(s_1 \& s_2 \& s_3)$, we can describe $d_{\varepsilon_1\varepsilon_2\varepsilon_3} \overset{\text{def}}{=} p(s_1^{\varepsilon_1} \& s_2^{\varepsilon_2} \& s_3^{\varepsilon_3})$, $\varepsilon_i = \pm (s^+ = s, s^- = \neg s)$, as

$$
\begin{align*}
 d_{++-} &= d_{12} - x, \\
 d_{+-+} &= d_{13} - x, \\
 d_{+++} &= d_{23} - x, \\
 d_{+-} &= d_1 - d_{12} - d_{23} + x, \\
 d_{--} &= d_2 - d_{12} - d_{23} + x, \\
 d_{++} &= d_3 - d_{13} - d_{23} + x, \\
 d_{--} &= 1 - d_1 - d_2 - d_3 + d_{12} + d_{13} + d_{23} - x.
\end{align*}
$$

- The requirement that $d_{\varepsilon_1\varepsilon_2\varepsilon_3} \geq 0$ leads to:

$$
\max(d_{12} + d_{13} - d_1, d_{12} + d_{23} - d_2, d_{13} + d_{23} - d_3, 0) \leq x \leq \\
\min(d_{12}, d_{13}, d_{23}, 1 - d_1 - d_2 - d_3 + d_{12} + d_{13} + d_{23}).
$$

- Both bounds can thus serve as appropriate “and”-operations.

- By using duality $A \lor B = \neg(\neg A \& \neg B)$, we can get the corresponding “or”-operations.
12. **MaxEnt Approach**

\[S = \sum p_i \cdot \ln(p_i) \rightarrow \text{max} \]

- We get
 \[p_i = x, \ d_{12} - x, \ d_{13} - x, \ d_{23} - x, \ d_1 - d_{12} - d_{13} + x, \]
 \[d_2 - d_{12} - d_{23} + x, \ d_3 - d_{12} - d_{23} + x, \] and
 \[1 - d_1 - d_2 - d_3 + d_{12} + d_{23} + d_{13} - x. \]

- Equation \(\frac{dS}{dx} = 0 \) leads to
 \[
 - \ln(x) + \ln(d_{12} - x) + \ln(d_{13} - x) + \ln(d_{23} - x) + \ln(d_1 - d_{12} - d_{13} + x) - \ln(d_2 - d_{12} - d_{23} + x) - \ln(d_3 - d_{13} - d_{23} + x) + \ln(1 - d_1 - d_2 - d_3 + d_{12} + d_{23} + d_{13} - x) = 0.
 \]

- If we raise \(e \) to the power of both side, we get a 4-th order equation.

- It is actually 3rd order since terms \(x^4 \) cancel out.

- By using duality \(A \lor B = \neg(\neg A \land \neg B) \), we can get the corresponding “or”-operations.
13. Acknowledgments

This work was supported in part:

- by the National Science Foundation grants
 - HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
 - DUE-0926721,
- by Grants 1 T36 GM078000-01 and 1R43TR000173-01 from the National Institutes of Health, and
- by grant N62909-12-1-7039 from the Office of Naval Research.