Modal operators on rings of continuous functions

G. Bezhanishvili, L. Carai, and P. J. Morandi

Department of Mathematical Sciences
New Mexico State University

Abstract

The ring of real-valued continuous functions over a topological space has naturally a structure of ℓ-algebra. ℓ-algebras are hybrids between lattices and \mathbb{R}-algebras. Gelfand-Naimark-Stone duality provides a dual equivalence between the category of compact Hausdorff spaces and the category bal of bounded archimedean ℓ-algebras. Our goal is to generalize this duality to compact Hausdorff spaces endowed with continuous relations. Continuous relations correspond dually to modal operators on rings of real-valued continuous functions. More precisely, we provide a dual equivalence between the category KHF of compact Hausdorff frames and the category mbal of modal bounded archimedean ℓ-algebras. In this talk, after giving the necessary definitions, we will show how to associate a modal operator to a relation and vice versa in order to obtain the duality between the categories KHF and mbal. We will discuss the relation between this new duality and the well-known Thomason and Esakia-Goldblatt dualities from modal logic. The talk will be concluded by presenting some correspondence results.