Outlier Detection Under Interval Uncertainty: Algorithmic Solvability and Computational Complexity

Vladik Kreinovich1, Luc Longpré1, Praveen Patangay1
Scott Ferson2, and Lev Ginzburg2

1Computer Science Department
University of Texas at El Paso
El Paso, TX 79968, USA
\{vladik,longpre,praveen\}@cs.utep.edu

2Applied Biomathematics
100 North Country Road
Setauket, NY 11733, USA
\{scott,lev\}@ramas.com

Abstract

In many application areas, it is important to detect outliers. Traditional engineering approach to outlier detection is that we start with some “normal” values x_1, \ldots, x_n, compute the sample average E, the sample standard variation σ, and then mark a value x as an outlier if x is outside the k_0-sigma interval $[E-k_0 \cdot \sigma, E+k_0 \cdot \sigma]$ (for some pre-selected parameter k_0). In real life, we often have only interval ranges $[\underline{x}_i, \overline{x}_i]$ for the normal values x_1, \ldots, x_n. In this case, we only have intervals of possible values for the bounds $E-k_0 \cdot \sigma$ and $E+k_0 \cdot \sigma$. We can therefore identify outliers as values that are outside all k_0-sigma intervals.

In this paper, we analyze the computational complexity of these outlier detection problems, provide efficient algorithms that solve some of these problems (under reasonable conditions), and list related open problems.

1 Introduction

In many application areas, it is important to detect outliers, i.e., unusual, abnormal values. In medicine, unusual values may indicate disease (see, e.g.,
[7, 17, 18]); in geophysics, abnormal values may indicate a mineral deposit or an erroneous measurement result (see, e.g., [5, 9, 13, 16]); in structural integrity testing, abnormal values may indicate faults in a structure (see, e.g., [2, 6, 7, 10, 11, 17, 18, 19]), etc.

Traditional engineering approach to outlier detection (see, e.g., [1, 12, 15]) is as follows:

- first, we collect measurement results \(x_1, \ldots, x_n \) corresponding to normal situations;
- then, we compute the sample average \(E \overset{\text{def}}{=} \frac{x_1 + \cdots + x_n}{n} \) of these normal values and the (sample) standard deviation \(\sigma = \sqrt{V} \), where \(V \overset{\text{def}}{=} \frac{(x_1 - E)^2 + \cdots + (x_n - E)^2}{n} \);
- finally, a new measurement result \(x \) is classified as an outlier if it is outside the interval \([L, U]\) (i.e., if either \(x < L \) or \(x > U \)), where \(L \overset{\text{def}}{=} E - k_0 \cdot \sigma \), \(U \overset{\text{def}}{=} E + k_0 \cdot \sigma \), and \(k_0 > 1 \) is some pre-selected value (most frequently, \(k_0 = 2, 3, \) or \(6 \)).

In some practical situations, we only have intervals \(x_i = [\underline{x}_i, \overline{x}_i] \) of possible values of \(x_i \). This happens, for example, if instead of observing the actual value \(x_i \) of the random variable, we observe the value \(\overline{x}_i \) measured by an instrument with a known upper bound \(\Delta_i \) on the measurement error; then, the actual (unknown) value is within the interval \(x_i = [\overline{x}_i - \Delta_i, \overline{x}_i + \Delta_i] \). For different values \(x_i \in x_i \), we get different bounds \(L \) and \(U \). Possible values of \(L \) form an interval \(L \) - we will denote it by \(\underline{L} \overset{\text{def}}{=} [L, \overline{L}] \); possible values of \(U \) form an interval \(U \overset{\text{def}}{=} [U, \overline{U}] \).

How do we now detect outliers? There are two possible approaches to this question: we can detect possible outliers and we can detect guaranteed outliers:

- a value \(x \) is a possible outlier if it is located outside one of the possible \(k_0 \)-sigma intervals \([L, U]\) (but is may be inside some other possible interval \([L, U]\));
- a value \(x \) is a guaranteed outlier if it is located outside all possible \(k_0 \)-sigma intervals \([L, U]\).

Which approach is more reasonable depends on a possible situation:

- if our main objective is not to miss an outlier, e.g., in structural integrity tests, when we do not want to risk launching a spaceship with a faulty part, it is reasonable to look for possible outliers;
- if we want to make sure that the value \(x \) is an outlier, e.g., if we are planning a surgery and we want to make sure that there is a micro-calciocation before we start cutting the patient, then we would rather look for guaranteed outliers.
The two approaches can be described in terms of the endpoints of the intervals \(L \) and \(U \):

A value \(x \) guaranteed to be normal – i.e., it is not a possible outlier – if \(x \) belongs to the intersection of all possible intervals \([L, U]\); the intersection corresponds to the case when \(L \) is the largest and \(U \) is the smallest, i.e., this intersection is the interval \([\underline{L}, \underline{U}]\). So, if \(x > U \) or \(x < \underline{U} \), then \(x \) is a possible outlier, else it is guaranteed to be a normal value.

If a value \(x \) is inside one of the possible intervals \([L, U]\), then it can still be normal; the only case when we are sure that the value \(x \) is an outlier is when \(x \) is outside all possible intervals \([L, U]\), i.e., is the value \(x \) does not belong to the union of all possible intervals \([L, U]\) of normal values; this union is equal to the interval \([\underline{L}, \underline{U}]\). So, if \(x > \underline{U} \) or \(x < \underline{L} \), then \(x \) is a guaranteed outlier, else it can be a normal value.

In real life, the situation may be slightly more complicated because, as we have mentioned, measurements often come with interval inaccuracy; so, instead of the exact value \(x \) of the measured quantity, we get an interval \(\mathbf{x} = [\underline{x}, \overline{x}] \) of possible values of this quantity.

In this case, we have a slightly more complex criterion for outlier detection:

- the actual (unknown) value of the measured quantity is a possible outlier if some value \(x \) from the interval \([\underline{x}, \overline{x}]\) is a possible outlier, i.e., is outside the intersection \([\underline{L}, \underline{U}]\); thus, the value is a possible outlier if one of the two inequalities hold: \(\underline{x} < \underline{U} \) or \(\overline{L} < \overline{x} \).

- the actual (unknown) value of the measured quantity is guaranteed to be an outlier if all possible values \(x \) from the interval \([\underline{x}, \overline{x}]\) are guaranteed to be outliers (i.e., are outside the union \([\underline{L}, \underline{U}]\)); thus, the value is a guaranteed outlier if one of the two inequalities hold: \(x < \underline{L} \) or \(\overline{U} < x \).

Thus:

- to detect possible outliers, we must be able to compute the values \(\underline{L} \) and \(\underline{U} \);
- to detect guaranteed outliers, we must be able to compute the values \(\overline{L} \) and \(\overline{U} \).

In this paper, we consider the problem of computing these bounds.

2 What Was Known Before

As we discussed in the introduction, to detect outliers under interval uncertainty, we must be able to compute the range \(L = [\underline{L}, \overline{L}] \) of possible values of \(L = E - k_0 \cdot \sigma \) and the range \(U = [\underline{U}, \overline{U}] \) of possible values of \(U = E + k_0 \cdot \sigma \).

In [3, 4], we have shown how to compute the intervals \(E = [E, \overline{E}] \) and \([\underline{x}, \overline{x}]\) of possible values for \(E \) and \(\sigma \). In principle, we can use the general ideas
of interval computations to combine these intervals and conclude, e.g., that L always belongs to the interval $E - k_0 \cdot [\sigma, \overline{\sigma}]$. However, as often happens in interval computations, the resulting interval for L is wider than the actual range — wider because the values E and σ are computed based on the same inputs x_1, \ldots, x_n, and cannot, therefore, change independently.

We mark a value x as an outlier if it is outside the interval $[L, U]$. Thus, if, instead of the actual ranges for L and U, we use wider intervals, we may miss some outliers. It is therefore important to compute the exact ranges for L and U. In this paper, we show how to compute these exact ranges.

3 Detecting Possible Outliers

To find possible outliers, we must know the values \underline{U} and \overline{U}. In this section, we design feasible algorithms for computing the exact lower bound \underline{U} of the function U and the exact upper bound \overline{U} of the function L. Specifically, our algorithms are quadratic-time, i.e., require $O(n^2)$ computational steps (arithmetic operations or comparisons) for n interval data points $x_i = [\underline{x}_i, \overline{x}_i]$.

The algorithm \mathcal{D}_U for computing \underline{U} is as follows:

- First, we sort all $2n$ values $\underline{x}_i, \overline{x}_i$ into a sequence $\underline{x}_1 \leq \underline{x}_2 \leq \cdots \leq \underline{x}_{2n}$; take $\underline{x}_0 = -\infty$ and $\underline{x}_{2n+1} = +\infty$. Thus, the real line is divided into $2n + 1$ zones $[\underline{x}_0, \underline{x}_1], [\underline{x}_1, \underline{x}_2], \ldots, [\underline{x}_{2n-1}, \underline{x}_{2n}], [\underline{x}_{2n}, \underline{x}_{2n+1})$.

- For each of these zones $[\underline{x}_k, \underline{x}_{k+1}]$, $k = 0, 1, \ldots, 2n$, we compute the values

$$
e_k \equiv \sum_{i : \underline{x}_i \geq \underline{x}_{k+1}} \underline{x}_i + \sum_{j : \overline{x}_j \leq \underline{x}_k} \overline{x}_j,$$

$$m_k \equiv \sum_{i : \underline{x}_i \geq \underline{x}_{k+1}} (\underline{x}_i)^2 + \sum_{j : \overline{x}_j \leq \underline{x}_k} (\overline{x}_j)^2,$$

and $n_k =$ the total number of such i's and j's. Then, we solve the quadratic equation

$$A - B \cdot \mu + C \cdot \mu^2 = 0,$$

where

$$A \equiv e_k \cdot (1 + \alpha^2) - \alpha^2 \cdot m_k \cdot n; \quad \alpha \equiv 1/k_0,$$

$$B \equiv 2 \cdot e_k \cdot ((1 + \alpha^2) \cdot n - \alpha^2 \cdot n); \quad C \equiv n_k \cdot ((1 + \alpha^2) \cdot n_k - \alpha^2 \cdot n).$$

We consider only those solutions for which $\mu \cdot n_k \leq e_k$ and $\mu \in [\underline{x}_k, \underline{x}_{k+1}]$. For each such solution, we compute the values of

$$E_k = \frac{e_k}{n} + \frac{n - n_k}{n} \cdot \mu, \quad M_k = \frac{m_k}{n} + \frac{n - n_k}{n} \cdot \mu^2,$$

and $U_k = E_k + k_0 \cdot \sqrt{M_k - (E_k)^2}$.

4
• Finally, we return the smallest of the values \(U_k \) as \(L \).

Theorem 2.1. The algorithm \(A_L \) always computes \(L \) in quadratic time.

The algorithm \(A_L \) for computing \(L \) is as follows:

• First, we sort all \(2n \) values \(x_i, \bar{x}_i \) into a sequence \(x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(2n)} \); take \(x_{(0)} = -\infty \) and \(x_{(2n+1)} = +\infty \). Thus, the real line is divided into \(2n+1 \) zones \([x_{(0)}; x_{(1)}], [x_{(1)}; x_{(2)}], \ldots, [x_{(2n-1)}; x_{(2n)}], [x_{(2n)}; x_{(2n+1)}] \).

• For each of these zones \([x_{(k)}; x_{(k+1)}], k = 0, 1, \ldots, 2n \), we compute the values

\[
e_k \equiv \sum_{i \geq x_{(k+1)}} x_i + \sum_{j < x_{(k)}} x_j,
\]

\[
m_k \equiv \sum_{i \geq x_{(k+1)}} (x_i)^2 + \sum_{j < x_{(k)}} (x_j)^2,
\]

and \(n_k \) is the total number of such \(i \)'s and \(j \)'s. Then, we solve the quadratic equation

\[
A - B \cdot \mu + C \cdot \mu^2 = 0,
\]

where

\[
A \equiv e_k^2 \cdot (1 + \alpha^2) - \alpha^2 \cdot m_k \cdot n; \quad \alpha \equiv 1/k_0,
\]

\[
B \equiv 2 \cdot e_k \cdot ((1 + \alpha^2) \cdot n_k - \alpha^2 \cdot n); \quad C \equiv n_k \cdot ((1 + \alpha^2) \cdot n_k - \alpha^2 \cdot n).
\]

We consider only those solutions for which \(\mu \cdot n_k \geq e_k \) and \(\mu \in [x_{(k)}; x_{(k+1)}] \). For each such solution, we compute the values of

\[
E_k = \frac{e_k}{n} + \frac{n-n_k}{n} \cdot \mu; \quad M_k = \frac{m_k}{n} + \frac{n-n_k}{n} \cdot \mu^2;
\]

and \(L_k = E_k - k_0 \cdot \sqrt{M_k - (E_k)^2} \).

• Finally, we return the largest of the values \(L_k \) as \(L \).

Theorem 2.2. The algorithm \(A_L \) always computes \(L \) in quadratic time.

4 In General, Detecting Guaranteed Outliers is NP-Hard

As we have mentioned in Section 1, to be able to detect guaranteed outliers, we must be able to compute the values \(L \) and \(U \). In general, this is an NP-hard problem:

Theorem 3.1. For every \(k_0 > 1 \), computing the upper endpoint \(U \) of the interval \([L, U]\) of possible values of \(U = E + k_0 \cdot \sigma \) is NP-hard.
Theorem 3.2. For every $k_0 > 1$, computing the lower endpoint \underline{L} of the interval
$[L, \overline{L}]$ of possible values of $L = E - k_0 \cdot \sigma$ is NP-hard.
(For readers’ convenience, all the proofs are placed in the special Proofs section).

Comment. For interval data, the NP-hardness of computing the upper bound for
σ was proven in [3, 4]. The general overview of NP-hardness of computational
problems in interval context is given in [8].

5 How Can We Actually Detect Guaranteed
Outliers?

How can we actually compute these values? First, we will show that if $1 + (1/k_0)^2 < n$
(which is true, e.g., if $k_0 > 1$ and $n \geq 2$), then the maximum of U
correspondingly, the minimum of L) is always attained at some combination of
endpoints of the intervals x_i; thus, in principle, to determine the values \overline{U} and
\underline{L}, it is sufficient to try all 2^n combinations of values \underline{x}_i and \overline{x}_i:

Theorem 4.1. If $1 + (1/k_0)^2 < n$, then the maximum of the function U on the
box $x_1 \times \ldots \times x_n$ is attained at one of its vertices, i.e., when for every i, either
$x_i = \underline{x}_i$ or $x_i = \overline{x}_i$.

Theorem 4.2. If $1 + (1/k_0)^2 < n$, then the minimum of the function L on the
box $x_1 \times \ldots \times x_n$ is attained at one of its vertices, i.e., when for every i, either
$x_i = \underline{x}_i$ or $x_i = \overline{x}_i$.

NP-hard means, crudely speaking, that there are no general ways for solving
all particular cases of this problem (i.e., computing \overline{V}) in reasonable
time.

However, we show that there are algorithms for computing \overline{U} and \underline{L} for
many reasonable situations. Namely, we propose efficient algorithms that compute \overline{U} and \underline{L} for the case when all the interval midpoints (“measured values”)
$\overline{x}_i \overset{\text{def}}{=} (\underline{x}_i + \overline{x}_i)/2$ are definitely different from each other, in the sense that the
“narrowed” intervals

\[[\overline{x}_i - \frac{1 + \alpha^2}{n} \cdot \Delta_i, \overline{x}_i + \frac{1 + \alpha^2}{n} \cdot \Delta_i] \]

- where $\alpha = 1/k_0$ and $\Delta_i \overset{\text{def}}{=} (\underline{x}_i - \overline{x}_i)/2$ is the interval’s half-width – do not
intersect with each other.

The algorithm \overline{A}_U is as follows:

- First, we sort all $2n$ endpoints of the narrowed intervals $\overline{x}_i - \frac{1 + \alpha^2}{n} \cdot \Delta_i$
and $\overline{x}_i + \frac{1 + \alpha^2}{n} \cdot \Delta_i$ into a sequence $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}$. This
enables us to divide the real line into $2n + 1$ segments (“small intervals”)
$[x_{(i)}, x_{(i+1)}]$, where we denoted $x_{(0)} \overset{\text{def}}{=} -\infty$ and $x_{(2n+1)} \overset{\text{def}}{=} +\infty$.

6
• For each of small intervals \([x_{(i)}; x_{(i+1)}]\), we do the following: for each \(j\) from 1 to \(n\), we pick the following value of \(x_j\):

 - if \(x_{(i+1)} < \bar{x}_j - \frac{1 + \alpha^2}{n} \cdot \Delta_j\), then we pick \(x_j = \bar{x}_j\);
 - if \(x_{(i+1)} > \bar{x}_j + \frac{1 + \alpha^2}{n} \cdot \Delta_j\), then we pick \(x_j = \underline{x}_j\);
 - for all other \(j\), we consider both possible values \(x_j = \bar{x}_j\) and \(x_j = \underline{x}_j\).

As a result, we get one or several sequences of \(x_j\). For each of these sequences, we check whether, for the selected values \(x_1, \ldots, x_n\), the value of \(E - \alpha \cdot \sigma\) is indeed within this small interval, and if it is, compute the value \(U = E + k_0 \cdot \sigma\).

• Finally, we return the largest of the computed values \(U\) as \(\overline{U}\).

Theorem 4.3. Let \(1 + (1/k_0)^2 < n\). The algorithm \(A_U\) computes \(\overline{U}\) in quadratic time for all the cases in which the “narrowed” intervals do not intersect with each other.

A similar algorithm \(A_L\) can be designed for computing \(\underline{L}\):

• First, we sort all \(2n\) endpoints of the narrowed intervals \(\bar{x}_i - \frac{1 + \alpha^2}{n} \cdot \Delta_i\) and \(\bar{x}_i + \frac{1 + \alpha^2}{n} \cdot \Delta_i\) into a sequence \(x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(2n)}\). This enables us to divide the real line into \(2n + 2\) segments (“small intervals”) \([x_{(i)}; x_{(i+1)}]\), where we denoted \(x_{(0)} \overset{\text{def}}{=} -\infty\) and \(x_{(2n+1)} \overset{\text{def}}{=} +\infty\).

• For each of small intervals \([x_{(i)}; x_{(i+1)}]\), we do the following: for each \(j\) from 1 to \(n\), we pick the following value of \(x_j\):

 - if \(x_{(i+1)} < \bar{x}_j - \frac{1 + \alpha^2}{n} \cdot \Delta_j\), then we pick \(x_j = \bar{x}_j\);
 - if \(x_{(i+1)} > \bar{x}_j + \frac{1 + \alpha^2}{n} \cdot \Delta_j\), then we pick \(x_j = \underline{x}_j\);
 - for all other \(j\), we consider both possible values \(x_j = \bar{x}_j\) and \(x_j = \underline{x}_j\).

As a result, we get one or several sequences of \(x_j\). For each of these sequences, we check whether, for the selected values \(x_1, \ldots, x_n\), the value of \(E + \alpha \cdot \sigma\) is indeed within this small interval, and if it is, compute the value \(L = E - k_0 \cdot \sigma\).

• Finally, we return the smallest of the computed values \(L\) as \(\underline{L}\).

Theorem 4.4. Let \(1 + (1/k_0)^2 < n\). The algorithm \(A_L\) compute \(\underline{L}\) in quadratic time for all the cases in which the “narrowed” intervals do not intersect with each other.
These algorithms also work when, for some fixed C, no more than C “narrowed” intervals can have a common point:

Theorem 4.5. Let $1 + (1/k_0)^2 < n$. For every positive integer C, the algorithm A_U computes \mathcal{U} in quadratic time for all the cases in which no more than C “narrowed” intervals can have a common point.

Theorem 4.6. Let $1 + (1/k_0)^2 < n$. For every positive integer C, the algorithm A_L computes \mathcal{L} in quadratic time for all the cases in which no more than C “narrowed” intervals can have a common point.

The corresponding computation times are quadratic in n but grow exponentially with C. So, when C grows, this algorithm requires more and more computation time. It is worth mentioning that the examples on which we prove NP-hardness (see proof of Theorem 3.1) correspond to the case when $n/2$ out of n narrowed intervals have a common point.

6 Open Problem: How to Check Data Consistency?

An important issue in outlier detection is data consistency. Crudely speaking, when we check the resulting outlier criterion by applying it to the original normal values (i.e., to $x = x_1$, $x = x_2$, ..., $x = x_n$), then these known-to-be-normal values should not be declared outliers. We said “crudely speaking” because, e.g., when the “normal” values x_i come from a Gaussian distribution, then 5% of these values are outside 2-sigma interval, 0.1% are outside 3-sigma interval, etc.

For very large k_0, the probability of being outside k_0-sigma interval is so small that from the practical viewpoint, we can such deviations impossible: e.g., even for $k_0 = 6$, this probability is $\approx 10^{-8}$. We cannot use such large value k_0 in all practical applications, especially in the applications in which we do not want to miss any outliers.

A natural solution is to use the smaller value for detecting outliers, and to use a much larger value $K \gg k_0$ for checking consistency. This is the approach that we will pursue in this paper. Specifically, we will use the following notions:

Definition 5.1. Let $K > 0$ be a real number. We say that the real numbers x_1, \ldots, x_n are K-consistent if they all lie outside the K-sigma interval

$$[E - K \cdot \sigma, E + K \cdot \sigma],$$

where E and σ are computed based on x_1, \ldots, x_n.

Definition 5.2. Let $K > 0$ be a real number. We say that the intervals x_1, \ldots, x_n are necessarily K-consistent if all possible combinations of values $x_i \in x_i$ are K-consistent.
It should be mentioned that while for numerical data, \(K \)-consistency is reasonable to enforce, for interval data, it is not so clear that \(K \)-consistency is a necessary requirement. The actual (unknown) values \(x_i \in x_i \) should be \(K \)-consistent, but nearby values may not be \(K \)-consistent at all. For example, when all the actual values \(x_i \) are below the measuring instruments threshold \(t \), all we will learn from measurements is that the actual (unknown) values \(x_1, \ldots, x_n \) belong to the interval \([-t, t]\). Intuitively, this situation seems normal, but for large \(n \), this set of intervals is not necessarily \(K \)-consistent in the sense of Definition X.2: indeed, we can have \(x_2 = \ldots = x_n = 0 \) and \(x_1 = t \), in which case \(E = t/n, \sigma = (t/n) \cdot \sqrt{n} - 1 \) and therefore, for \(K < \sqrt{n} - 1 \), the value \(x_1 \) is outside the \(K \)-sigma interval.

In these definitions, we assume that we know that the samples used as “normal” are actually normal, and therefore, it is natural to assume that the corresponding interval data is \(K \)-consistent. In some practical situations, however, we may not be sure that these data are normal. To handle such cases, it is desirable to able to check whether the given interval data is \(K \)-consistent. It is therefore desirable to find out how difficult this problem is.

7 Proofs

Proof of Theorem 2.1

1\(^{\circ}\). We will only prove Theorem 2.1; the proof of Theorem 2.2 is practically identical.

Let us first show that the algorithm \(A_d \) described in Section 2 is indeed correct.

Our proof of Theorem 2.1 is based on the fact that when the function \(U(x_1, \ldots, x_n) \) attains its smallest possible value at some point \((x_1^{\text{opt}}, \ldots, x_n^{\text{opt}}) \), then, for every \(i \), the corresponding function of one variable

\[
U_i(x_i) \overset{\text{def}}{=} U(x_1^{\text{opt}}, \ldots, x_{i-1}^{\text{opt}}, x_i, x_{i+1}^{\text{opt}}, \ldots, x_n^{\text{opt}})
\]

- the function that is obtained from \(U(x_1, \ldots, x_n) \) by fixing the values of all the variables except for \(x_i \) - also attains its minimum at the value \(x_i = x_i^{\text{opt}} \).

A differentiable function of one variable attains its minimum on a closed interval either at one of its endpoints or at an internal point in which its first derivative is equal to 0.

By definition, \(U = E + k_0 \cdot \sigma \). It is known that \(\sigma = \sqrt{M - E} \), where \(M \overset{\text{def}}{=} (1/n) \cdot \sum_{i=1}^n x_i^2 \) is the sample second moment. Here,

\[
\frac{\partial E}{\partial x_i} = \frac{1}{n}; \quad \frac{\partial M}{\partial x_i} = \frac{2 \cdot x_i}{n};
\]
therefore,
\[
\frac{\partial \sigma}{\partial x_i} = \frac{1}{2\sigma} \left(\frac{\partial M}{\partial x_i} - 2 \cdot E \cdot \frac{\partial E}{\partial x_i} \right) = \frac{1}{2\sigma} \cdot \left(\frac{2 \cdot x_i}{n} - 2 \cdot E \cdot \frac{1}{n} \right) = \frac{x_i - E}{\sigma \cdot n}.
\]
Hence, we conclude that
\[
\frac{dU_i}{dx_i} = \frac{\partial U}{\partial x_i} = \frac{1}{n} + k_0 \cdot \frac{x_i - E}{\sigma \cdot n}.
\]
Therefore, this first derivative is equal to 0 when \(\sigma + k_0 \cdot (x_i - E) = 0 \), i.e., when \(x_i = E - \alpha \cdot \sigma \), where \(\alpha = 1/k_0 \).

Thus, for the optimal values \(x_1, \ldots, x_n \) for which \(U \) attains its minimum, for every \(i \), we have either \(x_i = \bar{x}_i \), or \(x_i = \underline{x}_i \), or \(x_i = E - \alpha \cdot \sigma \).

2°. Let us show that if the open interval \((\underline{x}_i, \bar{x}_i) \) contains the value \(E - \alpha \cdot \sigma \), then the minimum of the function cannot be attained at points \(\bar{x}_i \) or \(\underline{x}_i \) and therefore, has to be attained at the value \(x_i = E - \alpha \cdot \sigma \).

Let us show that the minimum cannot be attained for \(x_i = \bar{x}_i \) (for \(x_i = \underline{x}_i \), the proof is similar). We will prove this impossibility by reduction to a contradiction: namely, we assume that the minimum is attained for \(x_i = \bar{x}_i \), and we will deduce a contradiction from this assumption.

The fact that the minimum is attained for \(x_i = \bar{x}_i \) means, in particular, that if we keep all the other values \(x_j \) the same but replace \(x_i \) by \(x'_i = E - \alpha \cdot \sigma \), then the value \(U \) will not decrease. Let us denote the change in \(x_i \) by \(\Delta x_i \), \(\Delta x_i = x_i - x'_i = \bar{x}_i - (E - \alpha \cdot \sigma) \), clearly, \(\Delta x_i > 0 \). We will denote the values of \(E, U \), etc., that correspond to \((x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n) \), by \(E', U' \), etc. In these terms, the desired inequality takes the form \(U \leq U' \), where \(U = E + k_0 \cdot \sqrt{M - E^2} \) and \(U' = E' + k_0 \cdot \sqrt{M' - (E')^2} \). It is convenient to multiply both sides of this inequality by \(\alpha = 1/k_0 \) and get an equivalent inequality \(J \leq J' \), where \(J = \sqrt{M - E^2} + \alpha \cdot E \) and \(J' = \sqrt{M' - (E')^2} + \alpha \cdot E' \).

By definition of \(E \) as the arithmetic average of the values \(x_i \), we conclude that \(E' = E - \Delta x_i/n \) (hence \(E - E' = \Delta x_i/n \)) and therefore,
\[
(E')^2 = E^2 - \frac{2 \cdot \Delta x_i \cdot E}{n} + \frac{\Delta x_i^2}{n^2}.
\]
Similarly, by definition, the sample second moment \(M \) is the average of the squares \(x_i^2 \); since \((x_i')^2 = x_i^2 - 2 \cdot \Delta x_i \cdot x_i + \Delta x_i^2 \), we conclude that
\[
M' = M - \frac{2 \cdot \Delta x_i \cdot x_i}{n} + \frac{\Delta x_i^2}{n}.
\]
Therefore, we have
\[
(\sigma')^2 = M' - (E')^2 = M - \frac{2 \cdot \Delta x_i \cdot x_i}{n} + \frac{\Delta x_i^2}{n} - E^2 + \frac{2 \cdot \Delta x_i \cdot E}{n} - \frac{\Delta x_i^2}{n^2}.
\]
Since $M - E^2 = \sigma^2$, we can rewrite this expression as follows:

$$(\sigma')^2 = \sigma^2 - \frac{2 \cdot \Delta x_i \cdot x_i}{n} + \frac{\Delta x_i^2}{n} + \frac{2 \cdot \Delta x_i \cdot E}{n} - \frac{\Delta x_i^2}{n^2}.$$

The inequality $J \leq J'$ can be rewritten as $\sigma + \alpha \cdot E \leq \sigma' + \alpha \cdot E'$. Moving $\alpha \cdot E'$ to the other side of this inequality, we conclude that

$$\sigma + \alpha \cdot (E - E') \leq \sigma'.
$$

Substituting the known expression for $E - E'$, we get

$$\sigma + \alpha \cdot \frac{\Delta x_i}{n} \leq \sigma'.
$$

Since $\Delta x_i > 0$, the left-hand side of this inequality is positive therefore, the right-hand side is also positive. Therefore, we can square both sides of this inequality and get a new inequality

$$\sigma^2 + 2 \cdot \alpha \cdot \sigma \cdot \frac{\Delta x_i}{n} + \alpha^2 \cdot \frac{\Delta x_i^2}{n^2} \leq (\sigma')^2.
$$

Substituting the above expression for $(\sigma')^2$, we get:

$$\sigma^2 + 2 \cdot \alpha \cdot \sigma \cdot \frac{\Delta x_i}{n} + \alpha^2 \cdot \frac{\Delta x_i^2}{n^2} \leq \sigma^2 - \frac{2 \cdot \Delta x_i \cdot x_i}{n} + \frac{\Delta x_i^2}{n} + \frac{2 \cdot \Delta x_i \cdot E}{n} - \frac{\Delta x_i^2}{n^2}.
$$

Subtracting σ^2 from both sides of the resulting inequality and dividing both sides by $\Delta x_i/n$, we conclude that

$$2 \cdot \alpha \cdot \sigma + \alpha^2 \cdot \frac{\Delta x_i}{n} \leq -2 \cdot x_i + \Delta x_i + 2 \cdot E - \frac{\Delta x_i}{n}.
$$

Moving all the terms containing Δx_i to the right-hand side and all other terms to the left-hand side, we conclude that

$$2 \cdot x_i - 2 \cdot E + 2 \cdot \alpha \cdot \sigma \leq \Delta x_i - \frac{1 + \alpha^2}{n} \cdot \Delta x_i.
$$

By definition, $\Delta x_i = x_i - (E - \alpha \cdot \sigma)$, therefore, the left-hand side of this formula has the form $2 \cdot \Delta x_i$, so this formula has the form

$$2 \cdot \Delta x_i \leq \Delta x_i - \frac{1 + \alpha^2}{n} \cdot \Delta x_i.
$$

Since $\Delta x_i > 0$, we can divide both sides of this inequality by Δx_i and conclude that $2 < 1 - (1 + \alpha^2)/n$, which is impossible.

The contradiction show that our assumption that when $E - \alpha \cdot \sigma \in (x_i, \bar{x})$, the minimum can be attained for $x_i = \bar{x}$ is impossible. Similarly, we can prove
that the minimum of the function U cannot be attained for $x_i = \bar{x}_i$. Therefore, for such i, the minimum can only be attained when $x_i = E - \alpha \cdot \sigma$.

3°. Let us now consider the case when $E - \alpha \cdot \sigma \notin (x_i, \bar{x}_i)$. In this case, the minimum is attained either for $x_i = \bar{x}_i$ or for $x_i = \underline{x}_i$.

Let us first consider the case when the minimum is attained for $x_i = \bar{x}_i$. The fact that the minimum is attained for $x_i = \bar{x}_i$ means, in particular, that if we keep all the other values x_j the same but replace x_i by $x'_i = \underline{x}_i = x_i - 2 \cdot \Delta_i$, then the value U will not decrease. Similarly to the previous part of the proof, we will denote the values of E, U, etc., that correspond to $(x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n)$, by E', U', etc. In these terms, the desired inequality takes the form $U \leq U'$, where $U = E + k_0 \cdot \sqrt{M - E^2}$ and $U' = E' + k_0 \cdot \sqrt{M' - (E')^2}$. It is convenient to multiply both sides of this inequality by $\alpha = 1/k_0$ and get an equivalent inequality $J \leq J'$, where $J = \sqrt{M - E^2} + \alpha \cdot E$ and $J' = \sqrt{M' - (E')^2} + \alpha \cdot E'$.

By definition of E as the arithmetic average of the values x_i, we conclude that $E' = E - 2 \cdot \Delta_i/n$ (hence $E - E' = 2 \cdot \Delta_i/n$) and therefore,

$$(E')^2 = E^2 - \frac{4 \cdot \Delta_i \cdot E}{n} + \frac{4 \cdot \Delta_i^2}{n^2}.$$

Similarly, by definition, the sample second moment M is the average of the squares x_i^2; since $(x'_i)^2 = x_i^2 - 4 \cdot \Delta_i \cdot x_i + 4 \cdot \Delta_i^2$, we conclude that

$$M' = M - \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n},$$

Therefore, we have

$$(\sigma')^2 = M' - (E')^2 = M - \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n} - E^2 + \frac{4 \cdot \Delta_i \cdot E}{n} - \frac{4 \cdot \Delta_i^2}{n^2}.$$

Since $M - E^2 = \sigma^2$, we can rewrite this expression as follows:

$$(\sigma')^2 = \sigma^2 - \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n} + \frac{4 \cdot \Delta_i \cdot E}{n} - \frac{4 \cdot \Delta_i^2}{n^2}.$$

The inequality $J \leq J'$ can be rewritten as $\sigma + \alpha \cdot E \leq \sigma' + \alpha \cdot E'$. Moving $\alpha \cdot E'$ to the other side of this inequality, we conclude that

$$\sigma + \alpha \cdot (E - E') \leq \sigma'.$$

Substituting the known expression for $E - E'$, we get

$$\sigma + \alpha \cdot \frac{2 \cdot \Delta_i}{n} \leq \sigma'.$$

Since $\Delta_i \geq 0$, the left-hand side of this inequality is non-negative; therefore, the right-hand side is also non-negative. Hence, we can square both sides of this
inequality and get a new inequality

\[\sigma^2 + 4 \cdot \alpha \cdot \sigma \cdot \frac{\Delta_i}{n} + 4 \cdot \alpha^2 \cdot \frac{\Delta_i^2}{n^2} \leq (\sigma')^2. \]

Substituting the above expression for \((\sigma')^2\), we get:

\[\sigma^2 + 4 \cdot \alpha \cdot \sigma \cdot \frac{\Delta_i}{n} + 4 \cdot \alpha^2 \cdot \frac{\Delta_i^2}{n^2} \leq \sigma^2 - \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i \cdot E}{n} - \frac{4 \cdot \Delta_i^2}{n^2}. \]

Subtracting \(\sigma^2\) from both sides of the resulting inequality and dividing both sides by \(4 \cdot (\Delta_i/n)\), we conclude that

\[\alpha \cdot \sigma + \alpha^2 \cdot \frac{\Delta_i}{n} \leq -x_i + \Delta_i + E - \frac{\Delta_i}{n}. \]

Moving the term \(\alpha \cdot \sigma\) to the right-hand side and moving all the terms from the right-hand side – except for \(E\) – to the left-hand side, we conclude that

\[x_i - \Delta_i + \frac{1 + \alpha^2}{n} \cdot \Delta_i \leq E - \alpha \cdot \sigma. \]

Since \(x_i = \mu\), we thus conclude that \(x_i - \Delta_i = \bar{x}_i\), so

\[E - \alpha \cdot \sigma \geq \bar{x}_i + \frac{1 + \alpha^2}{n} \cdot \Delta_i \]

hence \(E - \alpha \cdot \sigma \geq \bar{x}_i\).

We consider the case when \(E - \alpha \cdot \sigma \notin (\underline{x}_i, \bar{x}_i)\), i.e., when \(E - \alpha \cdot \sigma \leq \underline{x}_i\) or \(E - \alpha \cdot \sigma \geq \bar{x}_i\). Since \(E - \alpha \cdot \sigma > \bar{x}_i\), we cannot have \(E - \alpha \cdot \sigma \leq \underline{x}_i\), therefore, \(E - \alpha \cdot \sigma \geq \bar{x}_i\).

Similarly, when the minimum is attained for \(x_i = \bar{x}_i\), we have \(E - \alpha \cdot \sigma \leq \underline{x}_i\).

Thus:

- when \(E - \alpha \cdot \sigma \leq \underline{x}_i\), the minimum cannot be attained for \(x_i = \mu\) and therefore, it is attained when \(x_i = \underline{x}_i\);
- when \(\underline{x}_i \leq E - \alpha \cdot \sigma\), the minimum cannot be attained for \(x_i = \bar{x}_i\) and therefore, it is attained when \(x_i = \bar{x}_i\).

4°. Due to what we have proven in Parts 2° and 3° of this proof, once we know how the value \(\mu \equiv E - \alpha \cdot \sigma\) is located with respect to all the intervals \([\underline{x}_i, \bar{x}_i]\), we can find the optimal values of \(x_i\):

- if \(\bar{x}_i \leq \mu\), then minimum is attained when \(x_i = \bar{x}_i\);
- if \(\mu \leq \underline{x}_i\), then minimum is attained when \(x_i = \underline{x}_i\);
- if \(\underline{x}_i < \mu < \bar{x}_i\), then minimum is attained when \(x_i = \mu\).
Hence, to find the minimum, we will analyze how the endpoints x_i and x_i divide
the real line, and consider all the resulting sub-intervals.

Let the corresponding subinterval $[x_{(k)}, x_{(k+1)}]$ be fixed. For the i’s for which
$\mu \not\in (x_i, x_i)$, the values x_i that correspond to the minimal sample variance are
uniquely determined by the above formulas.

For the i’s for which $\mu \in (x_i, x_i)$, the selected value x_i should be equal to μ.
To determine this μ, we will use the fact that $\mu = E - \alpha \cdot \sigma$, where E and σ
are computed by using the same value of μ.

The value E is the average of all the values $x_{(i)}$, i.e., the sum of all the values x_i
divided by n. The sum of those values that are different from μ was denoted, in
the description of the algorithm, by e_k. By using notations from the algorithm,
we conclude that there are $n - n_k$ values of x_i that are equal to μ. So, the total
sum of all the values x_i is equal to $e_k + (n - n_k) \cdot \mu$ and therefore, the average E
is equal to

$$E = \frac{e_k + (n - n_k) \cdot \mu}{n} = \frac{e_k}{n} + \frac{n - n_k}{n} \cdot \mu.$$

Similarly, the sample second moment M is equal to:

$$M = \frac{m_k + (n - n_k) \cdot \mu^2}{n} = \frac{m_k}{n} + \frac{n - n_k}{n} \cdot \mu^2;$$

therefore,

$$\sigma^2 = M - E^2 = \left(\frac{m_k}{n} - \frac{e_k^2}{n^2}\right) - \frac{2 \cdot e_k \cdot (n - n_k)}{n^2} \cdot \mu + \left(\frac{n - n_k}{n} - \frac{(n - n_k)^2}{n^2}\right) \cdot \mu^2.$$

The coefficients at 1 and at μ^2 can be simplified, so we get

$$\sigma^2 = \frac{m_k \cdot n - e_k^2}{n^2} - \frac{2 \cdot e_k \cdot (n - n_k)}{n^2} \cdot \mu + \frac{(n - n_k) \cdot n_k \cdot \mu^2}{n^2}.$$

The condition $\mu = E - \alpha \cdot \sigma$ can be rewritten as $E - \mu = \alpha \cdot \sigma$. This equality,
in its turn, is equivalent to $\mu \leq E$ and $(E - \mu)^2 = \alpha^2 \cdot \sigma^2$.

The inequality $\mu \leq E$ is equivalent to $\mu \cdot n_k \leq e_k$. To express the second
equation in terms of μ, we first take into consideration that here,

$$E - \mu = \frac{e_k}{n} + \left(\frac{n - n_k}{n} - 1\right) \cdot \mu = \frac{e_k}{n} - \frac{n_k}{n} \cdot \mu;$$

therefore,

$$(E - \mu)^2 = \frac{e_k^2}{n^2} - \frac{2 \cdot e_k \cdot n_k}{n^2} \cdot \mu + \frac{n_k^2}{n^2} \cdot \mu^2.$$

Substituting the expressions for $(E - \mu)^2$ and σ^2 into the equation $(E - \mu)^2 = \alpha^2 \cdot \sigma^2$, and multiplying both sides by n^2, we get exactly the equation given in
the algorithm.
5°. To complete the proof of Theorem 2.1, we must show that this algorithm indeed requires quadratic time.

Indeed, sorting requires $O(n \log(n))$ steps, and the rest of the algorithm requires linear time ($O(n)$) for each of $2n$ subintervals, i.e., the total quadratic time.

The theorem is proven.

Proof of Theorem 3.1

Since $U = E + k_0 \cdot \sigma = k_0 \cdot J$, where $J \overset{\text{def}}{=} \sigma + \alpha \cdot E$ and $\alpha = 1/k_0$, we have $U = k_0 \cdot J$, where J is the upper endpoint of the interval of possible values of J. Thus, to prove that computing U is NP-hard, it is sufficient to prove that computing J is NP-hard.

To prove that the problem of computing J is NP-hard, we will prove that the known NP-hard subset problem P_0 can be reduced to it. In the subset problem, given m positive integers s_1, \ldots, s_m, we must check whether there exist signs $\eta_i \in \{-1, +1\}$ for which the signed sum $\sum_{i=1}^{m} \eta_i \cdot s_i$ equals 0.

We will show that this problem can be reduced to the problem of computing J, i.e., that to every instance (s_1, \ldots, s_m) of the problem P_0, we can put into correspondence such an instance of the J-computing problem that based on its solution, we can easily check whether the desired signs exist.

For that, we compute three auxiliary values

$$S \overset{\text{def}}{=} \frac{1}{m} \cdot \sum_{i=1}^{m} s_i^2; \quad N \overset{\text{def}}{=} \alpha \cdot \sqrt{\frac{2S}{1 - \alpha^2}}; \quad J_0 \overset{\text{def}}{=} (1 + \alpha^2) \cdot \sqrt{\frac{S}{2 \cdot (1 - \alpha^2)}};$$

since $k_0 > 1$, we have $\alpha < 1$, so these definitions make sense. Then, we take $n = 2 \cdot m$, $[x_1, x_2] = [-s_i, s_i]$ for $i = 1, 2, \ldots, m$, and $[x_{m+1}, x_{2m}] = [N, N]$ for $i = m + 1, \ldots, 2 \cdot m$. We want to show that for the corresponding problem, we always have $J \leq J_0$, and $J = J_0$ if and only if there exist signs η_i for which $\sum_{i=1}^{m} \eta_i \cdot s_i = 0$.

Let us first prove that $J \leq J_0$. Since J is the upper endpoint of the interval of possible values of J, this inequality is equivalent to proving that $J \leq J_0$ for all possible values J — i.e., for the values J corresponding to all possible values of x_i.

Indeed, it is known that $V = M - E^2$, where $M \overset{\text{def}}{=} (1/n) \cdot \sum_{i=1}^{n} x_i^2$ is the sample second moment; therefore, $J = \sqrt{M - E^2} + \alpha \cdot E$. This expression for J can be viewed as a scalar (dot) product $\vec{a} \cdot \vec{b}$ of two 2-D vectors $\vec{a} \overset{\text{def}}{=} (1, \alpha)$ and $\vec{b} \overset{\text{def}}{=} (\sqrt{M - E^2}, E)$. It is well known that for arbitrary vectors \vec{a} and \vec{b}, we have $\vec{a} \cdot \vec{b} \leq ||\vec{a}|| \cdot ||\vec{b}||$. In our case, $||\vec{a}|| = \sqrt{1 + \alpha^2}$ and $||\vec{b}|| = \sqrt{M}$, hence $J \leq \sqrt{1 + \alpha^2} \cdot \sqrt{M}$.

15
Since $|x_i| \leq s_i$ for $i \leq m$ and $x_i = N$ for $i > m$, we conclude that

$$M \leq \frac{1}{2m} \cdot \sum_{i=1}^{m} x_i^2 + \frac{1}{2m} \cdot \sum_{i=m+1}^{2m} x_i^2 = \frac{1}{2} \cdot S + \frac{1}{2} \cdot N^2;$$

therefore, $J \leq \sqrt{1 + \alpha^2} \cdot \sqrt{(S + N^2)/2}$. Substituting the expression that defines N into this formula, we conclude that $J \leq J_0$.

To complete our proof, we will show that if $J = J_0$, then $x_i = \eta_i \cdot s_i$ for $i \leq m$, and $\sum_{i=1}^{m} x_i = \sum_{i=1}^{m} \eta_i \cdot s_i = 0$. Let us first prove that $x_i = \pm s_i$. Indeed:

- we know that $J = J_0$ and that $J_0 = \sqrt{1 + \alpha^2} \cdot \sqrt{(S + N^2)/2}$, so $J = \sqrt{1 + \alpha^2} \cdot \sqrt{(S + N^2)/2}$;
- we have proved that in general, $J \leq \sqrt{1 + \alpha^2} \cdot \sqrt{M} \leq \sqrt{1 + \alpha^2} \cdot \sqrt{(S + N^2)/2}$.

Therefore, $J = \sqrt{1 + \alpha^2} \cdot \sqrt{(S + N^2)/2} = \sqrt{1 + \alpha^2} \cdot \sqrt{M}$, hence $M = (S + N^2)/2$. If $|x_j| < s_j$ for some $j \leq m$, then, from the fact that $|x_i| \leq s_i$ for all $i \leq m$ and $x_i = N$ for all $i > m$, we conclude that $M < (S + N^2)/2$. Thus, for every i from 1 to m, we have $|x_i| = s_i$, hence $x_i = \eta_i \cdot s_i$ for some $\eta_i \in \{-1, 1\}$.

Let us now show that $a \overset{\text{def}}{=} \frac{1}{m} \cdot \sum_{i=1}^{m} x_i = 0$. Indeed, since $x_i = N$ for $i > m$,

we have

$$E = \frac{1}{2m} \cdot \sum_{i=1}^{m} x_i + \frac{1}{2m} \cdot \sum_{i=m+1}^{2m} x_i = \frac{1}{2} \cdot a + \frac{1}{2} \cdot N;$$

therefore, to prove that $a = 0$, it is sufficient to prove that $E = N/2$. The value of E can deduced from the following:

- we have just shown that in our case, $J = \sqrt{1 + \alpha^2} \cdot \sqrt{M}$, where $M = (S + N^2)/2$, and
- we know that in general, $J = \bar{a} \cdot \bar{b} \leq ||\bar{a}|| \cdot ||\bar{b}|| = \sqrt{1 + \alpha^2} \cdot \sqrt{M}$, where the vectors \bar{a} and \bar{b} are defined above.

Therefore, in this case, $\bar{a} \cdot \bar{b} = ||\bar{a}|| \cdot ||\bar{b}||$, and hence, the vectors $\bar{a} = (1, \alpha)$ and $\bar{b} = (\sqrt{M - E^2}, E)$ are parallel (proportional) to each other, i.e., $\sqrt{M - E^2}/1 = E/\alpha$ hence $E = \alpha \cdot \sqrt{M - E^2}$. From this equality, we conclude that $E > 0$ and, squaring both sides, that $E^2 = \alpha^2 \cdot (M - E^2)$ hence $(1 + \alpha^2) \cdot E^2 = \alpha^2 \cdot M = \alpha^2 \cdot (S + N^2)/2$ and $E^2 = \alpha^2 \cdot (S + N^2)/(2 \cdot (1 + \alpha^2))$. Substituting the expression that defines N into this formula, we conclude that $E^2 = N^2/4$, so, since $E > 0$, we conclude that $E = N/2$ and therefore, that $a = 0$. The theorem is proven.
Proof of Theorem 3.2

This proof is similar to the proof of Theorem 3.1, with the only difference that we consider \(J = \sigma - \alpha \cdot E \) and we take \(x_i = -N \) for \(i > m \).

Proof of Theorems 4.1 and 4.2

We will only prove Theorem 4.1; the proof of Theorem 4.2 is practically identical.

We have already mentioned, in the proof of Theorem 2.1, that when the function \(U(x_1, \ldots, x_n) \) attains its largest possible value at some point \((x_1^{\text{opt}}, \ldots, x_n^{\text{opt}})\), then, for every \(i \), the corresponding function of one variable

\[
U_i(x_i) \overset{\text{def}}{=} U(x_1^{\text{opt}}, \ldots, x_i^{\text{opt}}, x_{i+1}, \ldots, x_n^{\text{opt}})
\]

- the function that is obtained from \(U(x_1, \ldots, x_n) \) by fixing the values of all the variables except for \(x_i \) - also attains its maximum at the value \(x_i = x_i^{\text{opt}} \).

A differentiable function of one variable attains its maximum on a closed interval either at one of its endpoints or at an internal point in which its first derivative is equal to 0 and its second derivative is non-positive. We will show that for the function \(U_i(x_i) \) defined on the interval \(x_i \), no such internal point is possible and therefore, \(x_i^{\text{opt}} \) is always equal to one of the endpoints of the interval \([\bar{x}_i, \underline{x}_i]\).

Indeed, \(U = E + k_0 \cdot \sigma \). As we have mentioned in the proof of Theorem 2.1, \(\sigma = \sqrt{M - E^2} \),

\[
\frac{\partial E}{\partial x_i} = \frac{1}{n}, \quad \frac{\partial M}{\partial x_i} = \frac{2 \cdot x_i}{n}, \quad \frac{\partial \sigma}{\partial x_i} = \frac{x_i - E}{\sigma \cdot n}.
\]

Hence, we conclude that

\[
\frac{dU_i}{dx_i} = \frac{\partial U}{\partial x_i} = \frac{1}{n} + k_0 \cdot \frac{x_i - E}{\sigma \cdot n}.
\]

Therefore, this first derivative is equal to 0 when \(\sigma + k_0 \cdot (x_i - E) = 0 \), i.e., when \(x_i - E = -\alpha \cdot \sigma \) (where, as in the main text, we denoted \(\alpha \overset{\text{def}}{=} 1/k_0 \)).

To get the expression for the second derivative, we differentiate the expression for the first derivative w.r.t. \(x_i \) and using the above expressions for the derivatives of \(E \) and \(\sigma \); as a result, we conclude that

\[
\frac{d^2 U_i}{dx_i^2} = \frac{\partial^2 U}{\partial x_i^2} = \frac{k_0}{\sigma^2 \cdot n} \cdot \left(\left(1 - \frac{1}{n} \right) \cdot \sigma - (x_i - E) \cdot \frac{x_i - E}{\sigma \cdot n} \right) = \frac{k_0}{\sigma^2 \cdot n} \cdot \left(\left(1 - \frac{1}{n} \right) \cdot \sigma^2 - \frac{1}{n} \cdot (x_i - E)^2 \right).
\]

Substituting the above expression for \(x_i - E = -\alpha \cdot \sigma \), we conclude that

\[
\frac{d^2 U_i}{dx_i^2} = \frac{k_0}{\sigma^2 \cdot n} \cdot \left(\left(1 - \frac{1}{n} \right) - \frac{\alpha^2}{n} \right) \cdot \sigma^2.
\]
Since we assumed that \(1 + (1/k_0)^2 = 1 + \alpha^2 < n \), we conclude that \(1 - (1/n) - (\alpha^2/n) > 0 \), so the second derivative is positive and therefore, we cannot have a maximum in an internal point. The theorem is proven.

Proof of Theorems 4.3–4.6

Similarly to the case of the previous two theorems, we will prove Theorems 4.3 and 4.5; the proof of Theorems 4.4 and 4.6 is, in effect, the same.

Let us first prove that the algorithm described in Section 4 is indeed correct. Since \(1 + (1/k_0)^2 < n \), we can use Theorem 4.1 and conclude that the maximum of the function \(U \) is attained when for every \(i \), either \(x_i = \bar{x}_i \) or \(x_i = \bar{x}_i \). For each \(i \), we will consider both these cases.

If the maximum is attained for \(x_i = \bar{x}_i \), this means, in particular, that if we keep all the other values \(x_j \) the same but replace \(x_i \) by \(x'_i = x_i - 2 \cdot \Delta_i \), then the value \(U \) will decrease. We will denote the values of \(E, U \), etc., that correspond to \((x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n) \), by \(E', U' \), etc. In these terms, the desired inequality takes the form \(U \geq U' \), where \(U = E + k_0 \cdot \sqrt{M - E^2} \) and \(U' = E' + k_0 \cdot \sqrt{M' - (E')^2} \). Similarly to the proof of Theorem 2.1, it is convenient to multiply both sides of this inequality by \(\alpha = 1/k_0 \) and get an equivalent inequality \(J \geq J' \), where \(J = \sqrt{M - E^2 + \alpha \cdot E} \) and \(J' = \sqrt{M' - (E')^2 + \alpha \cdot E'} \).

By definition of \(E \) as the arithmetic average of the values \(x_i \), we conclude that \(E' = E - (2 \cdot \Delta_i)/n \) and therefore,

\[
(E')^2 = E^2 - \frac{4 \cdot \Delta_i \cdot E}{n} + \frac{4 \cdot \Delta_i^2}{n^2}.
\]

Similarly, by definition, the sample second moment \(M \) is the average of the squares \(x_i^2 \); since \((x_i')^2 = x_i^2 - 4 \cdot \Delta_i \cdot x_i + 4 \cdot \Delta_i^2 \), we conclude that

\[
M' = M - \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n^2}.
\]

Therefore, the inequality \(J \geq J' \) takes the form

\[
\sigma + \alpha \cdot E \geq \sqrt{M - \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n^2} - E^2} + \frac{4 \cdot \Delta_i \cdot E}{n} - \frac{4 \cdot \Delta_i^2}{n^2} + \alpha \cdot E'.
\]

Let us simplify this expression some. First, we move the term \(\alpha \cdot E' \) to the left-hand side and take into consideration that \(E - E' = (2 \cdot \Delta_i)/n \); next, we take into account that \(M - E^2 = \sigma^2 \), so we can replace the two terms \(M \) and \(-E^2 \) under the square root by a single term \(\sigma^2 \). As a result, we arrive at the following inequality:

\[
\sigma + 2 \cdot \alpha \cdot \frac{\Delta_i}{n} \geq \sqrt{\sigma^2 - \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n^2} + \frac{4 \cdot \Delta_i \cdot E}{n} - \frac{4 \cdot \Delta_i^2}{n^2}}.
\]
Since both sides of this inequality are non-negative, we can square them and get the new inequality

\[\sigma^2 + 4 \cdot \alpha \cdot \sigma \cdot \frac{\Delta_i}{n} + 4 \cdot \alpha^2 \cdot \frac{\Delta_i^2}{n^2} \geq \sigma^2 - \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n^2} + \frac{4 \cdot \Delta_i \cdot E}{n} - \frac{4 \cdot \Delta_i^2}{n^2}. \]

If we subtract \(\sigma^2 \) from both sides of this inequality and divide both sides by \((4 \cdot \Delta_i)/n\), we conclude that

\[\alpha \cdot \sigma + \frac{\alpha^2}{n} \cdot \Delta_i \geq -x_i + E + \Delta_i - \frac{\Delta_i}{n}. \]

If we move terms around so that the terms proportional to \(x_i \) and \(\Delta_i \) are in the left-hand side and all other terms are on the right-hand side, and take into account that since \(x_i = \overline{x}_i = \bar{x}_i + \Delta_i \), we have \(x_i - \Delta_i = \bar{x}_i \), we conclude that

\[\bar{x}_i + \Delta_i \cdot \frac{1 + \alpha^2}{n} \geq E - \alpha \cdot \sigma. \]

Similarly, if the maximum is attained for \(x_i = \overline{x}_i \), this means, in particular, that if we keep all the other values \(x_j \) the same but replace \(x_i \) by \(x'_i = \overline{x}_i = x_i + 2 \cdot \Delta_i \), then the value \(U \) will decrease. We will denote the values of \(E, U, \) etc., that correspond to \((x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n) \), by \(E', U' \), etc. In these terms, the desire inequality takes the form \(U \geq U' \), where \(U = E + k_0 \cdot \sqrt{M - E^2} \) and \(U' = E' + k_0 \cdot \sqrt{M' - (E')^2} \). Similarly to the previous case, we multiply both sides of this inequality by \(\alpha = 1/k_0 \) and get an equivalent inequality \(J \geq J' \), where \(J = \sqrt{M - E^2} + \alpha \cdot E \) and \(J' = \sqrt{M' - (E')^2} + \alpha \cdot E' \).

By definition of \(E \) as the arithmetic average of the values \(x_i \), we conclude that \(E' = E + (2 \cdot \Delta_i)/n \) and therefore,

\[(E')^2 = E^2 + \frac{4 \cdot \Delta_i \cdot E}{n} + \frac{4 \cdot \Delta_i^2}{n^2}. \]

Similarly, by definition, the sample second moment \(M \) is the average of the squares \(x_i^2 \); since \((x'_i)^2 = x_i^2 + 4 \cdot \Delta_i \cdot x_i + 4 \cdot \Delta_i^2 \), we conclude that

\[M' = M + \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n}. \]

Therefore, the inequality \(J \geq J' \) takes the form

\[\sigma + \alpha \cdot E \geq \sqrt{M + \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n^2} - E^2 - \frac{4 \cdot \Delta_i \cdot E}{n} - \frac{4 \cdot \Delta_i^2}{n^2}} + \alpha \cdot E'. \]

Let us simplify this expression. First, we move the term \(\alpha \cdot E' \) to the left-hand side and take into consideration that \(E - E' = -(2 \cdot \Delta_i)/n \); next, we take into account that \(M - E^2 = \sigma^2 \), so replace the two terms \(M \) and \(-E^2 \) under
the square root by a single term \(\sigma^2 \). As a result, we arrive at the following inequality:

\[
\sigma - 2 \cdot \alpha \cdot \frac{\Delta_i}{n} \geq \sqrt{\sigma^2 + \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n^2} - \frac{4 \cdot \Delta_i \cdot E}{n} - \frac{4 \cdot \Delta_i^2}{n^2}}.
\]

Since both sides of this inequality are non-negative, we can square them and get the new inequality

\[
\sigma^2 - 4 \cdot \alpha \cdot \Delta_i^2/n + 4 \cdot \sigma^2 \cdot \frac{\Delta_i^2}{n^2} \geq \sigma^2 + \frac{4 \cdot \Delta_i \cdot x_i}{n} + \frac{4 \cdot \Delta_i^2}{n^2} - \frac{4 \cdot \Delta_i \cdot E}{n} - \frac{4 \cdot \Delta_i^2}{n^2}.
\]

If we subtract \(\sigma^2 \) from both sides of this inequality and divide both sides by \((4 \cdot \Delta_i)/n\), we conclude that

\[
-\alpha \cdot \sigma + \frac{\alpha^2}{n} \cdot \Delta_i \geq x_i - E + \Delta_i - \frac{\Delta_i}{n}.
\]

If we move terms around so that the terms proportional to \(x_i \) and \(\Delta_i \) are in the right-hand side and all other terms are on the left-hand side, and take into account that since \(x_i = \bar{x}_i = \bar{x}_i - \Delta_i \), we have \(x_i + \Delta_i = \bar{x}_i \), we conclude that

\[
\bar{x}_i - \Delta_i \cdot \frac{1 + \alpha^2}{n} \leq E - \alpha \cdot \sigma.
\]

So:

- if \(x_i = \bar{x}_i \), then \(E - \alpha \cdot \sigma \leq \bar{x}_i + \Delta_i \cdot \frac{1 + \alpha^2}{n} \);
- if \(x_i = \bar{x}_i \), then \(E - \alpha \cdot \sigma \geq \bar{x}_i - \Delta_i \cdot \frac{1 + \alpha^2}{n} \).

Therefore, if we know the value of \(E - \alpha \cdot \sigma \), then:

- if \(\bar{x}_i + \Delta_i \cdot \frac{1 + \alpha^2}{n} < E - \alpha \cdot \sigma \), then we cannot have \(x_i = \bar{x}_i \) hence \(x_i = \bar{x}_i \);
- similarly, if \(\bar{x}_i - \Delta_i \cdot \frac{1 + \alpha^2}{n} > E - \alpha \cdot \sigma \), then we cannot have \(x_i = \bar{x}_i \) hence \(x_i = \bar{x}_i \).

The only case when we do not know what value to choose is the case when

\[
\bar{x}_i - \Delta_i \cdot \frac{1 + \alpha^2}{n} \leq E - \alpha \cdot \sigma \leq \bar{x}_i + \Delta_i \cdot \frac{1 + \alpha^2}{n},
\]

i.e., when the value \(E - \alpha \cdot \sigma \) belongs to the \(i \)-th narrowed interval; in this case, we can, in principle, have both \(x_i = \bar{x}_i \) and \(x_i = \bar{x}_i \). Thus, the algorithm is indeed correct.

Let us prove that this algorithm requires quadratic time. Indeed, once we know where \(E \) is with respect to the endpoints of all narrowed intervals, we can
determine the values of all optimal x_i - except for those that are within this narrowed interval. Since we consider the case when no more than C narrowed intervals can have a common point, we have no more than C undecided values x_i. Trying all possible combinations of lower and upper endpoints for these $\leq C$ values requires $\leq 2^C$ steps. For each “small interval” and for each of these combinations, we need a linear time ($O(n)$) to compute U. Thus, for each small interval, we need $O(2^C \cdot n)$ computational steps. There are $O(n)$ small intervals, so the overall number of steps is $O(2^C \cdot n^2)$. Since C is a constant, the overall number of steps is thus $O(n^2)$.

The theorem is proven.

Conclusions

In many application areas, it is important to detect outliers. Traditional engineering approach to outlier detection is that we start with some “normal” values x_1, \ldots, x_n, compute the sample average E, the sample standard variation σ, and then mark a value x as an outlier if x is outside the k_0-sigma interval $[E - k_0 \cdot \sigma, E + k_0 \cdot \sigma]$ (for some pre-selected parameter k_0).

In real life, we often have only interval ranges $x_i = [\underline{x}_i, \overline{x}_i]$ for the normal values x_1, \ldots, x_n. For different values $x_i \in x_i$, we get different values of $L \overset{\text{def}}{=} E - k_0 \cdot \sigma$ and $U \overset{\text{def}}{=} E + k_0 \cdot \sigma$ - and thus, different k_0-sigma intervals $[L, U]$. We can therefore identify guaranteed outliers as values that are outside all k_0-sigma intervals, and possible outliers as values that are outside some k_0-sigma intervals. To detect guaranteed and possible outliers, we must therefore be able to compute the range $L = [\underline{L}, \overline{L}]$ of possible values of L and the range $U = [\underline{U}, \overline{U}]$ of possible values of U.

In our previous papers [3, 4], we have shown how to compute the intervals $E = [\underline{E}, \overline{E}]$ and $[\underline{\sigma}, \overline{\sigma}]$ of possible values for E and σ. In principle, we can combine these intervals and conclude, e.g., that L always belongs to the interval $E - k_0 \cdot [\underline{\sigma}, \overline{\sigma}]$. However, the resulting interval for L is wider than the actual range - wider because the values E and σ are computed based on the same inputs x_1, \ldots, x_n and are, therefore, not independent from each other.

If, instead of the actual ranges for L and U, we use wider intervals, we may miss some outliers. It is therefore important to compute the exact ranges for L and U.

In this paper, we showed that computing these ranges is, in general, NP-hard, and we provided efficient algorithms that compute these ranges under reasonable conditions.

Acknowledgments

This work was supported in part by NASA under cooperative agreement NCC5-209 and grant NCC2-1232, by the Future Aerospace Science and Technology

This work was supported (in part) by Small Business Innovation Research grant 9R44CA81741 to Applied Biomathematics from the National Cancer Institute (NCI), a component of the National Institutes of Health (NIH). The opinions expressed herein are those of the authors and not necessarily those of the NCI or the NIH.

This work was partly supported by a research grant from Sandia National Laboratories as part of the Department of Energy Accelerated Strategic Computing Initiative (ASCI).

References

