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ABSTRACT

In programming languages, reflection is the ability
to discover and manipulate, at runtime, information
about program entities, such as objects. We present
our thoughts on extending the concept of reflection
to behavioral interface specifications. We explain the
benefits of such specification reflection, and discuss im-
plementation approaches, support tools, and research
problems and issues in this area.

1. INTRODUCTION

Reflection is becoming more widely used in practice, as
witnessed by its adoption in the very popular object-
oriented programming languages Java [1] and C# [21].
Refiection refers to the ability to manipulate program-
ming language constructs as runtime data, e.g., by
representing, or reifying, them in the language it-
self [10]. In object-oriented programming languages
such as Java, this is most often done by reifying in-
formation about objects as runtime class objects or
meta objects, and reifying information about classes
as runtime meta class objects, etc. These meta ob-
jects and meta class objects are accessed and manipu-
lated through the reflective application programming
interfaces (APIs), often called Meta-object Protocols
(MOPs) [4, 12, 13]. By using MOPs, for instance,
a debugger may access the execution stack of a pro-
gram under debugging. Reflection has been studied
by many researchers, in particular, in the area of pro-
gramming languages. However, little work is found
extending the concept of reflection to specification lan-
guages.

Formal behavioral interface specification languages,
such as JML [14, 15], allow one to specify both the

syntactic interface and behavior of Java program mod-
ules, such as classes and interfaces. JML does this
using preconditions and postconditions for methods,
as well as other features, such as class invariants. In-
terface specification languages such as JML provide
a wide variety of support tools to manipulate spec-
ifications [3, 5, 6, 7]. However, JML’s tools do not
make specifications available at runtime through well-
defined APIs, such as those of MOPs.

In this paper we present our thoughts on the re-
search challenges involved in extending the concept of
reflection to formal behavioral interface specification
languages, and to JML in particular. We call the idea
of supporting reflection on behavioral interface spec-
ifications specification reflection. The overall goal of
specification reflection is to reify specifications as first-
class objects [9] in the sense that they can be accessed
and manipulated at runtime just like regular objects.
For example, one may query an object about its spec-
ifications, to discover the pre- or postconditions of its
methods or its invariants. The specifications discov-
ered may be used for both runtime assertion checking
or as documentation for human readers. The major
engineering challenge is to support both uses with a
single representation.

Specification reflection may have an impact not just
on tools, but also on the semantics of specification
languages. This is because, in a language, like JML or
Eiffel [17], that uses expressions in its assertions, it is
possible to write code that uses specification reflection
inside assertions. However, we ignore this possibility
in what follows.

The rest of this paper is organized as follows. In the
next section we first define what we mean by specifi-
cation reflection. In Section 3 we describe a simple
specification reflection model, suitable for JML. Sec-
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tion 4 explains the benefits of specification reflection,
while Section 5 discusses some research issues. In Sec-
tion 6 we briefly describe our research plan, and then
we conclude in Section 7.

2. SPECIFICATION REFLECTION

What precisely do we mean by “specification reflec-
tion”?  Like code reflection in programming lan-
guages!, we use the term specification reflection very
generally to mean the ability to manipulate specifica-
tions as runtime data. The nature of specification ma-
nipulation may be introspective or may involve more
than just introspection.

Specification introspection is the general term for
discovering information related to specifications at
runtime. Like code introspection [2] this can be used
to discover descriptive information; for example, one
could use specification introspection to discover the
pre- or postconditions of methods. A more interest-
ing facet of specification introspection is the ability to
observe a program’s specification state. The specifica-
tion state of a program can involve specification-only
fields of objects, such as JML’s model and ghost fields,
which are abstractions of the program’s normal (code)
fields [8].

Reflective specification execution is the general term
for execution of specifications discovered through in-
trospection. Reflective specification execution allows
one to program a design by contract tool [18, 19], like
a runtime assertion checker [5, 20], or to customize it.

Both kinds of specification reflection are useful.
For example, using specification introspection one can
build a system that can retrieve formal specifications
of an object’s methods in a debugger. Reflective spec-
ification execution brings even more benefits, but also
carries with it several challenges. We discuss these
challenges in the following sections.

Yet another possibility in manipulating specifica-
tions is to change or modify the specifications them-
selves at runtime. Such a capability might be useful,
e.g., to dynamically debug specifications at runtime.
However, we will not discuss this aspect further in this

paper.

3. A REFLECTION MODEL

To make our ideas more concrete, we now explore a
basic plan for implementing specification reflection in
JML.

The information needed to support specification re-
flection must be present in the bytecode produced by

1We often use the term “code reflection” to distinguish it
from specification reflection.
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Figure 1: A specification reflection model

the JML compiler (jmlc). This will allow it to be
present at run-time. One way to do this might be to
put the information needed into attributes in the byte-
code file. However, to load the information at runtime
then requires a special class loader. Another possibil-
ity is to add the information needed into the classes
and interfaces that would be loaded in any case — for
example, as extra fields, methods, or nested classes
or interfaces. In this case, naming conventions would
probably be necessary to prevent the names of such
added members from conflicting with programmer-
defined names.

In our basic model of specification reflection, as
shown in Figure 1, for each code (or normal) object
there may be a separate object, called a specification
object, that represents the model and ghost fields of
the code object. (The model and ghost fields are,
as mentioned above, abstractions of the code object
that are used in specifications.) Each code class ob-
ject is also associated with a specification class ob-
ject that represents the specifications written for that
class. The specification class object contains such in-
formation as the class’s invariant and pre- and post-
conditions of methods declared by the class. The spec-
ification class object provides introspection on the ob-
ject’s specification, in a similar fashion as the class ob-
ject of an object provides introspection on the object.
That is, in addition to the meta-object protocol, a pro-
gram object is now provided with a meta-specification
protocol to access the specifications and specification
state represented by its specification objects. A par-
ticular specification may be queried and checked based
on the program and specification states.

We expect to provide at least the following kinds of
APIs for specification reflection.

e Retrieving specification objects and classes. The
specification state of an object should be acces-
sible from the object (e.g., getSpecObject()).
In our reflection model, a specification state is



represented by a specification object. In addi-
tion, a specification class should be also available
from both an object and the object’s class (e.g.,
getSpecClass()).

e Querying specification states. It should be pos-
sible to query the specification state represented
by a specification object, e.g., to get the value
of a specification-only field. A similar reflection
facility as referring to a program field in object
reflection may be needed for this.

e Querying about specifications. It should be pos-
sible to query about specifications on a spec-
ification class, e.g., retrieving pre- and post-
conditions of a method, and the invariant of a
class or an interface (e.g., getPrecondition(),
getPostcondition(), and getInvariant()).

e Executing specifications. It should be possible to
execute a retrieved specification, such as a pre- or
postcondition. A similar reflection facility, such
as that used to invoke a program method in code
reflection may be needed for this.

4. BENEFITS

The followings are some important benefits of specifi-
cation reflection that cannot be achieved without it.

e Runtime access to specifications allows programs
that understand specifications to make decisions
about them. For example, multiagent software
could use specification introspection to commu-
nicate details of a protocol’s semantics between
independently-developed agents; thus allowing
them to decide if they can sensibly communicate.

e Customization of runtime assertion checking. Us-
ing reflective specification execution, one could
write a customized assertion checker, that, for
example, only executed assertion checks when
certain conditions are true (e.g., the 10th time
through a loop).

e Support for more open development of
specification-based tools using the specifica-
tion reflection APIs. These APIs can be seen
as a development framework for tools that use
specifications.  Such tools, including runtime
assertion checkers, browsers, and testing tools,
are hard to develop from scratch. In addition,
differences in parsing and representations make
it difficult to share code between tools.

e Easier shipment and location of specifications by
users. If the specifications are in the compiled
outputs (the bytecode files in Java), then they
are easy to send and locate. They can even ac-
company code for which sources are not provided.

5. RESEARCH ISSUES

In addition to its benefits, specification reflection also
poses several challenges for research, which we discuss
below.

Reflection for Whom?

The key research issue that we see is how to sup-
port both human readers in specification introspec-
tion and reflective specification execution. The engi-
neering problem here is that the representation that
is most convenient for execution, namely code to eval-
uate assertions directly, is difficult to translate into
human-readable form. Conversely, if a form, such as
an abstract syntax tree (AST) that is closer to the
specification language’s syntax is stored, then there
may be considerable difficulty and expense in execut-
ing the specification.

While it is easy to see the benefits of supporting
reflective specification execution, supporting human
readers is also highly desirable. For example, this
allows humans to browse specifications directly from
bytecode. This would be particularly useful in a dis-
tributed environment where one can dynamically re-
trieve a reusable binary component; its specification
comes automatically with the component. The ap-
proach may also have some advantages in terms of
maintenance, for both specifications and bytecode are
maintained in the same place and at the same time.
We can imagine a wide variety of tools that take ben-
efits of the human readable specification reflection.

The trick is thus to find a representation that is
amenable to both kinds of readers. We can use
some analogies with code reflection support for some
ideas. For example, bytecodes typically have associ-
ated “symbol table” information that can be used to
aid debuggers and provide information that is not nor-
mally present in bytecode (such as variable names).
Another idea is “just in time” compilation, where
specifications stored as ASTs and symbol table infor-
mation might be compiled only when needed. It might
also be possible, by standardizing the compilation pro-
cess, to back-translate bytecodes that are designed
for executing specifications into human-readable form.
Or some blend of such representations might be used.
This is certainly an engineering challenge.



Specification States and Inheritance

In our reflection model, a program object may be as-
sociated with special objects called specification ob-
jects (see Section 3). The specification objects rep-
resent the specification state of the object; this in-
cludes model fields and ghost fields for the object.
Such specification-only fields are used to write more
abstract assertions in JML2. The question here is how
we model and represent such specification states in the
presence of specification inheritance?

In JML, a subtype inherits specifications from its
supertypes®. In JML a class inherits pre- and post-
conditions, invariants, etc. from both the superclasses
that it extends and the interfaces that it implements.
An interface also inherits specifications from its su-
perinterfaces that it extends. A supertype may intro-
duce a specification state that must be inherited by
a subtype, e.g., by declaring a model field. Such a
specification state may be referred to by a subtype’s
specifications.

In programming languages such as Java, an in-
stance of a subclass has memory slots not only for
fields declared in the subclass but also for those de-
clared in its superclasses. Thus, the state of a class
instance is encapsulated in a single object, regard-
less of where the fields are declared. A similar ap-
proach may be employed to represent the specifica-
tion state. An object’s specification state may be en-
capsulated in a single specification object regardless
of where the specification-only fields are declared. In
this scheme the state of a specification object con-
sists of all specification-only fields declared either in
the corresponding object’s class or in any of its super-
types. This approach, though conceptually simple, is
not modular and might require a challenge for reflec-
tive specification execution due to problems such as
name crashes (see the following subsection).

Another approach is to distribute the specification
state into several specification objects, e.g., one for
each class or interface [5]. In this approach, an object
may be associated with several specification objects,
one directly and the rest indirectly. The idea is to in-
troduce a separate specification object for each class
and interface. An object is directly associated with
single specification object that represent the specifica-
tion state explicitly introduced by the object’s class.
However, the specification object is, in general, com-
posed of other specification objects, one for each su-
pertype of the class. Thus, the specification object

2A specification may also refer to program fields (e.g., DBC
specifications written in terms of program variables), thus both
the object itself and its specification objects are needed to eval-
uate a specification.

3We use the term type to denote both classes and interfaces.

graph is the same as inheritance hierarchy. This ap-
proach is modular and does not incur such problems
as name crashes, but the system has to maintain spec-
ification object graphs for specification execution.

Inheritance of Specifications

In JML there are some difference between inheritance
of code and specifications. In code inheritance, a
subtype’s method overrides (or replaces) its super-
type’s methods of the same signature. However, in
JML’s specification inheritance, a subtype and its su-
pertype’s specifications are conjoined in a way that
forces behavioral subtyping [11, 16]. That is, a sub-
type’s methods must satisfy the specifications of all
methods it overrides.

How should JML’s specification inheritance be sup-
ported by specification reflection? For example, eval-
uating a method’s precondition means evaluating not
only the method’s precondition specified in the class
where the method is declared, but also all the inher-
ited preconditions, such as those inherited from the
class’s superclasses or the interfaces that the class im-
plements. A simple monolithic approach would be to
statically combine all such specifications at compile
time and turn it into an assertion checking code or
method. However, this approach is not modular and
increases the size of bytecode, as the assertion check-
ing code for a supertype’s specification is repeated in
the bytecode of every subtype. A better and modu-
lar approach would be to instrument each specification
into a separate assertion checking code or method and
let the subtype’s bytecode call its supertype’s [5]. On
the other hand, during introspection, one may wish
to know which part of a specification is inherited and
which part is written into the class.

Evaluating Specifications that Refer to Old
States

We expect that exposing the capability of checking
specification assertions (such as pre- and postcondi-
tions and invariants) through reflective specification
execution will greatly improve the usability of specifi-
cation reflection, e.g., to such specification-based tools
as debugging tools and testing tools. These tools can
be built on top of a specification reflection facility.
An interesting issue in reflective specification exe-
cution is how to provide reflective access to previous
code and specification states. In JML, as in Eiffel,
postconditions can refer to both pre-state and a post-
state. The pre-state value of an expression e can be
referred to using the notation \old(e). The problem
is how to provide access to such pre-state values, so
that post-conditions (for example) can be executed?



Ideally, such a pre-state should be automatically pro-
vided by the specification reflection system. But how
was the reflection system to know that it needed to
save the pre-state value at an earlier time? Doing this
without imposing large overheads is another engineer-
ing challenge.

Support Tools

A wide variety of tools are possible that enable and
use specification reflection.

The most fundamental tool for enabling specifica-
tion reflection is a compiler that translates programs
annotated with JML specifications into bytecode that
supports specification reflection. Also needed is a run-
time library that can interpret the information the
compiler puts in the bytecodes.

Once such an enabling compiler is built, other tools
such as runtime assertion checkers, debugging tools,
and testing tools can be built using the specifica-
tion reflection facility. The research hypothesis is
that building such tools has advantages over building
them without specification reflection. The challenge
is to understand these advantages and to demonstrate
them convincingly.

6. OUR PLAN

We are currently investigating our idea on specifica-
tion reflection by using Java and JML. Our plan is to
pick a subset of JML, and define a specification re-
flection model and specification meta protocols. Once
our model is refined, we will modify and extend the
current JML tools such as JML compiler (jmlc) to
implement our model and the specification reflection
facility for Java and JML.

As a part of our research effort on specification re-
flection, we are currently implementing a scheme to
encode some aspects of JML specifications into Java
bytecode file. It will be initially used to support mod-
ular typechecking of JML specifications, but later it
will be adapted and extended to support specification
reflection.

The JML compiler already implements a limited
form of specification reification in that specification
states are represented as a part of the correspond-
ing object or as separate specification objects, and
specification assertions such pre- and postconditions
are implemented as separate assertion checking meth-
ods. However, no APIs for specification reflection (i.e.,
specification meta protocols) are provided.

7. SUMMARY

We believe that the ability to manipulate specifica-
tions as runtime data, that we call specification reflec-
tion, bring many benefits by extending the notion of
code reflection from programming languages to spec-
ification languages. We proposed a simple specifica-
tion reflection model that would be suitable for a be-
havioral interface specification language like JML. We
then explained some of the benefits of using specifi-
cation reflection and discussed research problems and
issues.
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