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ABSTRACT 

Design decisions and constraints of a software system can be specified pre-
cisely using a formal notation such as the Object Constraint Language (OCL). 
However, they are not executable, and assuring the conformance of an im-
plementation to its design is hard. The inability of expressing design con-
straints in an implementation and checking them at runtime invites, among 
others, the problem of design drift and corrosion. We propose runtime checks 
as a solution to mitigate this problem. The key idea of our approach is to 
translate design constraints written in a formal notation such as OCL into as-
pects that, when applied to a particular implementation, check the constraints 
at run-time. Our approach enables runtime verification of design-
implementation conformance and detects design corrosion. The approach is 
modular and plug-and-playable; the constraint checking logic is completely 
separated from the implementation modules which are oblivious of the former. 
We believe that a significant portion of constraints translation can be auto-
mated. 
 
Keywords: AspectJ, Class invariants, Object Constraint Language, Pre and 
postconditions, Runtime checking  

 

1- INTRODUCTION  

One of the problems associated with software development and maintenance 
is design corrosion [28] or design decay [13]. In general, the corrosion of 
software design is proportional to the development and maintenance time 
when an initial design of software gets modified to accommodate new or 
changed requirements or to correct defects. Frequently, modifications are 
implemented by developers other than the original designer, and these de-
velopers might not have complete understanding of the original design. De-
sign corrosion also occurs as the result of code hacks and workarounds, a 
common practice of software maintenance. The real problem is that design 
corrosion or drift may occur without being noticed by software developers or 
maintainers. In short, even with rigorous development and maintenance, 
software often loses its original design and becomes difficult to understand 
and modify. 
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The Object Constraint Language (OCL) [27] [33] is a textual notation to speci-
fy constraints or rules that apply to UML models such as class diagrams [31]. 
It is based on mathematical set theory and predicate logic and can express 
relevant information about the systems being modeled that cannot otherwise 
be expressed by diagrammatic notations. Using a combination of UML and 
OCL, one can build a precise design model that includes detailed design de-
cisions and choices along with the semantics such as class invariants and 
operation pre- and postconditions. Such a precise model is the key to a mod-
el-driven development approach [5] [25], the essence of which is to use a 
model as the basis of software development.  
 
As a design notation, however, OCL is not executable, and OCL constraints 
are not reified to implementation artifacts. This may lead to problems such as 
inconsistency during development and maintenance. For example, if design 
constraints are not explicitly expressed in source code, source code modifica-
tions may allow deviations from the design constraints due to a developer 
oversight or misinterpretation. In this paper we advocate runtime checking as 
a partial solution to the problem of design corrosion. 
 
We propose to reify OCL constraints to implementations in a form that can be 
executed to detect violations of design constraints, thus design corrosion, at 
run-time. As evidenced by the presence of the assert statement in the Java 
programming language, runtime assertion checking is recognized as a prac-
tical programming tool and is most effective when assertions are generated 
from formal specifications such as OCL constraints. We also hypothesize that, 
with a suitable framework in place, a wide class of important design con-
straints and properties written in OCL can be automatically translated to run-
time checking code. 
 
However, for runtime constraint checking to be effective and practical, it must 
satisfy several requirements including transparency, modularity, and plug-
and-playability. Transparency is essential for any kind of runtime checks. The 
execution of checking code should be transparent in that, unless a constraint 
is violated and except for performance measures such as time and space, the 
behavior of the program should not be changed; that is, the checking code 
should be free from side effects. The other two requirements are practical 
considerations. Modularity implies that constraint checking code is organized 
into modules separated from the program to improve maintainability by en-
forcing boundaries between the checking code and the program. This elimi-
nates in-line assertions such as assert statements as a viable implementation 
approach. Constraint checking should be plug-and-playable so that the 
checking code can be added or removed from an implementation without 
modifying the source code. This will enable the checking code to be applied 
to different implementations of the same design and also selectively enabled 
or disabled, for example, for production code. 
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Our approach is aspect-based in that we translate OCL constraints to As-
pectJ aspects, which exist separately from the design implementation. As-
pectJ [21] is an aspect-oriented extension of the Java programming language 
(see Section 2-2). We call such an aspect a constraint checking aspect. The 
beauty of our approach is that the implementation is independent of the con-
straint checking aspects. However, when compiled with the aspects, it will be 
checked for OCL constraints at appropriate execution points at run-time. This 
leads to more cohesive and readable implementations. In summary, our ap-
proach is modular and plug-and-playable. These are the main benefits of us-
ing AspectJ as an instrumentation language and differentiate our approach 
from assertion-based approaches. Another contribution of our work is that we 
define translation rules from OCL to AspectJ and identify several issues in the 
use of AspectJ as an instrumentation language. 
 
The remainder of this paper is structured as follows. In Section 2 we give 
background information on UML, OCL, and AspectJ needed to read the rest 
of this paper. We also introduce a simple program consisting of three classes 
to be used as a running example. In Section 3 we describe our approach by 
first explaining the organization of constraint checking code and then illustrat-
ing translations of key OCL constructs and expressions to AspectJ. In Section 
4 we describe a case study used to evaluate our approach. In Section 5, we 
discuss several interesting issues and problems that we encountered during 
our study. We conclude our paper with related work in Section 6. 
 

 
Figure 1 A round manager application 

 

2- BACKGROUND 

2-1 UML and OCL 

The Unified Modeling Language (UML) [31] is a standard modeling language 
for writing a software system’s blueprints, including its structure and behavior. 
It uses diagrammatic notations to express various design aspects of a soft-
ware system; UML 2.0 has 13 different types of diagrams. The diagram 
shown in Figure 1, for example, is a UML class diagram for an application 
that keeps track of golf rounds played by a golfer. A class diagram describes 
the static structure of a system in terms of its components and their relation-
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ships. This diagram shows three classes (RoundManager, Course, and 
Round) and relationships among them. A round manager is composed of a 
set of courses and an ordered collection of rounds, and each round is asso-
ciated with a course. 
 
A UML diagram alone, however, cannot express a rich semantics of and all 
relevant information about an application. The class diagram above, for ex-
ample, doesn’t express the fact that each round was played on a golf course 
known to the round manager. It is very likely that a system built based only on 
the diagrams will be incorrect. Thus, there is a need for describing additional 
constraints on the objects and entities present in the model. 
 
OCL [33] is a textual, declarative notation to specify constraints or rules that 
apply to UML models such as class diagrams. OCL is based on mathematical 
set theory and predicate logic. The fact that each round should have been 
played on a known course can be expressed in OCL as follows. 
 
context RoundManager 
  inv: rounds->forAll(r: Round | self.courses.includes(r.course)) 
 
As shown, an OCL constraint is preceded by a context specification that iden-
tifies the UML model being constrained, in this case RoundManager. As indi-
cated by the keyword inv, this constraint, called an invariant, states a fact that 
should be always true in the model. The keyword self denotes the object be-
ing constrained by an OCL expression, called a contextual instance; in this 
case it is an instance of the RoundManager class. Note that due to their mul-
tiplicities, the rounds and courses aggregations are viewed as collections, 
and thus one can use collection operations such as forAll and includes. OCL 
comes with several primitive types such as Integer, Real, Boolean, and String 
and collection types such as Collection, Set, OrderedSet, and Sequence (see 
Section 4). The example uses collections opertations such as forAll and in-
cludes; the forAll operation tests whether an expression is true for all objects 
of a given collection, and the includes operation tests whether an object is 
contained in a collection. 
 
It is also possible to specify the behavior of an operation in OCL. For example, 
the following OCL constraints specifies the behavior of an operation named 
addRound by writing a pair of predicates called pre and postconditions. 
 
context RoundManager::addRound(r: Round): void 
  pre: courses->includes(r.course) 
  post: rounds = rounds@pre->append(r) 
 
The pre and postconditions pair states that, given a round played on a known 
course, the operation should append the round to the list of known rounds. 
The postfix operator @pre denotes the value of a property (rounds) in the 
pre-state, i.e., just before an operation invocation. The OCL append operation 
adds an object to the end of an ordered collection.  
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2-2 AspectJ 

AspectJ [1] [21] is an aspect-oriented extension for the Java programming 
language to address crosscutting concerns. A crosscutting concern is a sys-
tem-level, peripheral requirement that must be implemented by multiple pro-
gram modules, thereby leading to tangled and scattered code. Examples of 
crosscutting concerns include logging, security, persistence, and concurrency. 
AspectJ provides built-in language constructs for implementing crosscutting 
concerns in a modular way. The key idea is to denote a set of execution 
points, called join points, and introduce an additional behavior, called an ad-
vice, at the join points. The following code shows an AspectJ aspect that 
checks the precondition of the addRound method described earlier. 
 
public aspect PreconditionChecker { 
  pointcut addRoundExe(RoundManager m, Round r): 
    execution(void RoundManager.addRound(Round)) && this(m) && 
args(r); 
 
  before(RoundManager m, Round r): addRoundExe(m, r) { 
    if (!m.hasCourse(r.getCourse())) 
      throw new RuntimeException("precondition error"); 
  } 
} 
 
The pointcut declaration designates a set of execution points and optionally 
exposes certain values at those execution points. The pointcut addRoundExe 
denotes executions of the addRound method and exposes the receiver (m) 
and the argument (r). The before keyword introduces an advice that is to be 
executed before the execution of a join point; there are also after and around 
advices [21]. In the example, the advice is executed right before the execu-
tion of the addRound method and checks its precondition by referring to the 
values exposed at that join point. If the RoundManager class is compiled with 
the above aspect, all invocations of the addRound method that violate the 
precondition will be detected and result in runtime exceptions. One advantage 
of aspect-oriented programming is that the base code such as the RoundMa-
nager class doesn’t depend on the aspect code such as the Precondition-
Checker aspect; in fact, the former is oblivious of the later in that it doesn’t 
even know the existence of the aspect. In summary, aspect-oriented pro-
gramming provides a modular solution to crosscutting concerns. 
 

3- APPROACH 

In this section we explain our approach to monitoring design constraints by 
applying it to the round manager application. We first describe how we organ-
ize our AspectJ code and then explain how we translate OCL constructs and 
expressions to AspectJ checking code. Figure 2 shows our framework for 
checking OCL constraints. For each class we have a separate aspect that 
advises the class. This aspect, called a constraint checking aspect, is re-
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sponsible for checking all OCL constraints specified for the class. Each con-
straint checking aspect is defined to be a subclass of an abstract class, 
OclChecker. This class provides a set of utility methods, such as a mechan-
ism for reporting constraint violations, to constraint checking aspects. It uses 
the strategy design pattern [15] to separate constraint checking from violation 
reporting and to select a reporting mechanism appropriate for a particular 
application; for example, a constraint violation may be reported by throwing 
an exception, logging it, or notifying it to another program. OCL constraints 
are side-effect free, and there is no code dependency between the class be-
ing checked and its constraint checking aspect. The class is independent of 
the aspect, and the same aspect can be applied to different implementations 
of the same design. Constraint checking can also be easily added or removed 
by recompiling the source code. These are the main benefits of using AspectJ 
as an instrumentation language. In the following subsection we show a sam-
ple constraint checking aspect. 
 

 
 

Figure 2 Framework for checking OCL constraints 
 
 

3-1 Illustration 

To illustrate our approach, let us consider the following OCL constraint that 
specifies the behavior of the course() method of the RoundManager class. 
 
context RoundManager::course(): Set(Course) 
  post: result = courses 
 
The keyword result denotes the return value of the operation. Figure 3 shows 
the constraint checking aspect for the RoundManager class. It only shows 
code snippet relevant for the checking of the above OCL constraint. The as-
pect is declared to be privileged, which means that it bypasses Java lan-
guage access checking and thus can access private members. This allows 
the aspect, for example, to access private fields such as courses used in the 
postcondition. 
 
As shown, an OCL constraint is translated to pointcuts and advices, often 
along with helper fields or methods. The pointcuts define execution points at 
which constraint checks are to be performed, and the advices perform con-
straint checks. It is also common that pointcuts expose several values such 
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as the receiver and arguments at the execution points so that they can be 
referred to in the constraint checking advices. For example, the pointcut cour-
sesExe exposes the receiver, a RoundManager, on which the courses me-
thod is invoked. The advices check OCL constraints and thus are often direct 
translations of the constraints. In the example, a special form of the after ad-
vice was used to refer to the return value; this after-returning advice gets ex-
ecuted only if the join point returns normally without throwing an exception. A 
constraint violation, if detected, is reported by calling a framework method 
such as checkPost; the AspectJ pseudo variable thisJoinPoint denotes the 
join point currently being advised, i.e., an invocation of the course() method. 
The framework method inherited from the abstract class OclChecker checks 
the given condition and reports an appropriate constraint violation, e.g., by 
throwing an exception. 
 
 
public privileged aspect RoundManagerOclChecker extends OclChecker { 
 

  pointcut coursesExe(RoundManager m): 
    this(m) && execution(Set<Course> RoundManager.courses()); 
 

  after(RoundManager m) returning (Set<Course> s): coursesExe(m) { 
    checkPost(s.equals(m.courses), "post: result = courses", thisJoinPoint); 
  } 
} 

Figure 3 Constraint checking aspect 
 
 
In the next two subsections we explain how we translate OCL constructs and 
expressions to AspectJ pointcuts and advices. 
 

3-2 Translating OCL Constructs 

Here we describe our approach for translating various OCL constructs such 
as class invariants and operation pre and postconditions. 
 
Invariants: An invariant is a boolean expression that states a condition that 
must always be met by all instances of the type for which it is defined [33]. 
The question is when to check an invariant. Since an invariant constrains the 
state of an object and an object’s state is represented by fields, an invariant 
may be checked whenever fields get new values. For example, an OCL inva-
riant “context Round inv: score > 0,” stating that the score must be positive, 
may be translated to the following AspectJ advice; the keyword set denotes 
an execution point at which a new value is assigned to a field. 
 
after(Round r): set(int Round.score) && this(r) { 
  checkInv(r.score > 0); 
} 
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This approach, however, has several problems. First, it does not work for ob-
jects with reference fields. The states of such objects may be changed indi-
rectly by mutating the contained objects, i.e., field objects. This kind of state 
changes cannot be captured using the set pointcut because they occur with-
out assigning new values to the fields of objects under consideration. Second, 
the approach is too restrictive. It ignores Java’s control structures and ab-
straction mechanisms and does not provide for internal or hidden program 
states. For example, a temporary violation of an invariant in hidden program 
states such as during the execution of a method body is not allowed. As a 
result, a circular data structure cannot be created because its creation re-
quires more than one assignment and the first assignment may lead to an 
invariant violation. Third, the approach may be inefficient, as every assign-
ment to a field has to be checked for an invariant violation.  
 
To remedy the aforementioned problems, we follow the Design by Contract 
principle [26] where a class invariant must be established upon the comple-
tion of an object construction and be preserved by every method invocation 
on the object. In other words, an invariant should be established by a con-
structor of a class and be preserved by every method of the class. 
 
We translate an invariant into a pair of before and after advices. The before 
advice checks the invariant on the pre-state, i.e., right before the execution of 
the invoked method, and the after advice checks the invariant on the post-
state, i.e., right after the execution of the invoked method or constructor. For 
example, the OCL invariant on the RoundManager class in Section 2-1 stat-
ing that each round should be played on a known course can be translated to 
the following AspectJ code. 
 
pointcut constructorExe(RoundManager m): 

this(m) && execution(RoundManager.new(..)); 
 

pointcut methodExe(RoundManager m): 
this(m) && execution(* RoundManager+.*(..)); 
 

before(RoundManager m): methodExe(m) { 
  checkAllInv(m); 
} 
 
after(RoundManager m): constructorExe(m) || methodExe(m) { 
  checkAllInv(m); 
} 
 
private void checkAllInv(RoundManager m) { 
  for (Round r: m.rounds) 
    checkInv(m.courses.contains(r.getCourse())); 
} 
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In the pointcut declarations wild card symbols (“*” and “..”) are used to denote 
executions of any constructor or method, regardless of its name, return type, 
or arguments; the keyword new denotes a constructor. In the pointcut metho-
dExe, the notation RoundManager+ denotes the class RoundManager and all 
its subclasses. The intention is to make the invariant be preserved by sub-
classes. That is, the invariant should also be maintained by the additional 
methods of subclasses—methods that are overridden or introduced by sub-
classes (see Section 5 for a discussion on constraints inheritance). Note also 
that the before advice is applied only to method executions, but not to con-
structor executions.  
 
Pre and postconditions: The pre and postconditions specify the behavior of 
an operation and should be checked right before and after the execution of 
the operation. They can be translated to a pair of before and after advices 
(see earlier examples in Sections 2-2 and 3-1) or to a single around advice. 
An around advice is the most powerful kind of advice and surrounds a join 
point such as a method execution. It can perform custom behavior before and 
after the join point and is also responsible for choosing whether to proceed to 
the join point or to shortcut executing it by returning its own return value or 
throwing an exception. For example, the pre and postconditions of the ad-
dRound method of the RoundManager class can be translated to the follow-
ing around advice (see Section 2-1). 
 
pointcut addRoundExe(RoundManager m, Round r): 
  this(m) && args(r) && execution(void RoundManager.addRound(Round)); 
 
void around(RoundManager m, Round r): addRoundExe(m, r) { 
  // pre: course->includes(r.course) 

checkPre(m.courses.contains(r.getCourse())); 
 

  List<Round> oldRounds = new ArrayList<Round>(); 
oldRounds.addAll(m.rounds); // rounds@pre 

  proceed(m, r); 
oldRounds.add(r); 
 

// post: rounds = rounds@pre->append(r) 
  checkPost(m.rounds.equals(oldRounds)); 
} 
 
Note that the pointcut declaration exposes the receiver and the argument so 
that they can be referred to in the advice. The advice first checks the precon-
dition, proceeds to continue with the normal flow of execution at the corres-
ponding join point (as indicated by the keyword proceed), and finally checks 
the postcondition. If there is any pre-state value referenced in the postcondi-
tion (e.g., self@pre), it is cloned or copied to a local variable in the pre-state 
(i.e., prior to proceeding) so that they can be used for the postcondition check 
in the post-state (see Section 5 for a discussion on this).  
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Initialization: The OCL init construct specifies the initial value of an attribute or 
association end, both of which are usually mapped to Java fields. For exam-
ple, the following constraint states that the initial value of the attribute course 
of the RoundManager must be an empty set. 
 
context RoundManager::courses 
  init: Set{} 
 
The init construct can be translated to an after advice on constructor execu-
tions, which is the point when an object completes its initialization. For exam-
ple, the above constraint is translated to the following AspectJ code. 
 
pointcut constructorExe(RoundManager m): 

this(m) && execution(RoundManager.new()); 
 

after(RoundManager m): constructorExe(m) { 
  checkInit(new Set<Round>.equals(m.courses)); 
} 
 
Definition, derivation, and operation body: The def construct introduces a new 
attribute or query operation to a UML model such as a class diagram. It also 
specifies the value of the new attribute or the return value of the new query 
operation. For example, the following OCL statement introduces a new query 
operation named rounds to the RoundManager class. The operation takes a 
course and returns all the rounds played on that course. 
 
context RoundManager 

def: rounds(c: Course): Sequence(Round) = rounds->select(r: Round |  
    r.course.name = c.name) 

 
The OCL collection operation select returns a new collection consisting of all 
the elements from a collection that satisfy a given condition. As the OCL def 
construct constrains the result of a newly-introduced operation, it is translated 
to an after-returning advice that is applied only when the corresponding join 
point terminates normally without throwing an exception, as shown below. 
 
pointcut roundsCourseExe(RoundManager m, Course c): 

this(m) && args(c)   
  && execution(List<Round> RoundManager.rounds(Course)); 
 

after(RoundManager m, Course c) returning (List<Round> l):  
  roundsCourseExe(m, c) { 
  List<Round> expected = new ArrayList<Round>(); 
  for (Round r: m.rounds) 
    if (r.getCourse().equals(c)) 
      expected.add(r); 
  checkDef(l.equals(expected)); 
} 
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In the case of an attribute definition, it states how the value of the newly-
introduced attribute must be calculated. For example, we may introduce a 
new attribute named numOfRounds to explicitly keep track of the number of 
known rounds, as follows. 
 
context RoundManager 
  def: numOfRounds: Integer = rounds.size() 
 
The translation of an attribute definition depends on how the newly-introduced 
attribute is implemented in the program. If it is implemented as a query me-
thod, it can be translated to an after-returning advice that checks the return 
value. On the other hand, if it is implemented as a field, it can be translated to 
a check that is executed when the field is read, as follows. 
 
after(RoundManager m) returning (int r): 
  this(m) && get(int RoundManager.numOfRounds) { 
  checkDef(r == m.rounds.size()); 
} 
 
OCL has two more constructs. The derive construct specifies the value of a 
derived attribute or association end. Its translation is similar to that of the 
attribute definition. The body construct defines the result of a query operation, 
and thus it can be treated like an operation definition.  
 

3-3 Translating OCL Expressions 

We believe that, given a mapping between OCL modeling elements and Java 
implementation artifacts, most OCL expressions can be systematically trans-
lated to AspectJ expressions and statements. The operators of OCL built-in 
types such as Boolean and Integer can be semi-automatically translated to 
corresponding operators of Java. It should be noted, however, that OCL uses 
a three-value logic to handle undefinedness [27], and thus care should be 
taken when translating Boolean expressions. For example, an OCL expres-
sion x or y cannot be directly translated to the corresponding Java expression 
x || y. If x becomes undefined, the result is y for the OCL case, while it is un-
defined for Java; in Java, for example, if the evaluation of x encounters an 
exception then the evaluation of the whole expression terminates abruptly by 
throwing the exception. The OCL expression should be translated to a block 
of code such as the following, where r contains the result [8]: 
 
boolean r = false; 
try { r = EVAL(x); } catch (Exception e) {} 
if (!r) { r = EVAL(y); } 
 
As shown above, collection operations such as forAll, select, includes, and 
appends may also be systematically translated to Aspect code. Since Java 
doesn’t support blocks or closures to specify the conditions, iteration opera-
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tions such as forAll and select must be transformed into sequences of state-
ments. 
 
OCL also has an interesting operator that can be used only in the postcondi-
tion. The hasSent operator, denoted “ˆ”,specifies that a certain interaction has 
taken place during the execution of an operation. The expression 
self.addRound(r) in the second postcondition below becomes true if an ad-
dRound message with argument r was sent to self during the execution of the 
operation. It constrains the traces of an operation execution and can be used 
to prescribe that the operation be implemented in terms of the ad-
dRound(Round) operation. 
 
context RoundManager::addRound(s: Sequence(Round)): void 
  pre: s->forAll(r: Round | self.courses->includes(r.course)) 
  post: rounds = rounds@pre->union(s) 
  post: s->forAll(r: Round | self^addRound(r)) 
 
It is instructive to show how an OCL expression consisting of message send-
ing can be translated to an AspectJ check. The core of our solution is to in-
troduce another advice to trace the execution of the operation and detect the 
required message sending. However, it is a bit involved because the two ad-
vices—execution tracing and constraint checking—have to communicate with 
each other and the execution of the operation may be recursive. 
 
The tracing advice for the above example is shown below. In essence, it 
records each round object that was used as an argument to the ad-
dRound(Round) method during an execution of the addRound(List<Round>) 
method on a field oclMessages. 
 
private Set<Round> RoundManager.oclMessages = null; 
 

pointcut addRoundListExe(): 
  execution(void RoundManager.addRound(List<Round>)); 
 

pointcut addRoundNestedExe(RoundManager m, Round r): 
  this(m) && args(r) && cflowbelow(addRoundListExe()) 
  && execution(void RoundManager.addRound(Round)); 
 

after(RoundManager m, Round r): addRoundNestedExe(m, r) { 
  m.oclRoundMessages.add(r); 
} 
 
The first statement, known as static crosscutting, introduces a new field 
named oclMessages to the RoundManager class. The pointcut addRound-
NestedExe denotes an execution of the addRound(Round) method occurring 
during an execution of the addRound(List<Round>) method; the keyword 
cflowbelow denotes all the join points enclosed by the argument join point. 
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The constraint checking advice shown below uses the information accumu-
lated by the tracing advice. For this, it refers to the newly introduced field 
oclMessages. 
 
void around(RoundManager m, List<Round> l): 

this(m) && args(r) && addRoundListExe() { 
 

  Set<Round> oldMessages = m.oclMessages; 
m.oclMessages = new HashSet<Round>(); 
 

proceed(m, l); 
 

  checkPost(m.oclMessages.containsAll(l)); 
  if (oldMessages != null) 
    m.oclMessage.addAll(oldMessages); 
  else 
    m.oclMessages = null; 
} 
 
One complication is that because the join point (i.e., execution of the ad-
dRound(List<Round>) method) may be executed recursively, we have to 
save and restore the value of the field oclMessages before and after proceed-
ing to the join point. Upon the completion of the join point execution, we also 
update the information stored in the field oclMessages; all the messages that 
were sent during a recursive execution were also sent during the execution 
that initiated the recursion.  
 

4- CASE STUDY 

We performed a case study to evaluate the feasibility and effectiveness of our 
approach. An initial challenge was to find an open-source Java application 
that has a formal UML model including class diagrams and OCL constraints. 
Instead of writing a small sample program by ourselves we decided to use an 
existing program to eliminate subjectivenss in the experiment and to make 
the case study more realistic. The OCL standard specification defines several 
collection types such as Collection, Set, OrderedSet, Bag and Sequence [27]. 
The OCL collection types are organized into a class hierarchy, and the beha-
vior of each type is formally specified in OCL in the standard specification. 
We also found a couple of Java implementations of the OCL collection types 
[1] [11]; they are to facilitate an interpretation or translation of OCL constraints. 
We decided to use the one from the Dresden OCL Toolkit [11] [32] for our 
case study (see Section 6 for a discussion of the Dresden OCL Toolkit). This 
implementation consists of five generic classes: OclCollection<T>, OclSet<T>, 
OclBag<T>, OclOrderedSet<T>, and OclSequence<T>. All classes are im-
mutable in that no method can change the states of objects. All collection op-
erations specified in the standard are implemented except for iterator opera-
tions such as forAll that take OCL expressions as parameters and work on 
each element of a collection. This is because Java doesn’t support this kind 
of higher-order methods. 
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The objective of our case study was to detect inconsistencies between OCL 
constraints of the collection types and the Java implementations. For our 
case study, we first translated OCL constraints on collection types into As-
pectJ constraint checking code by following the translation rules described in 
Section 4. This was done manually and resulted in one constraint checking 
aspect per OCL collection type plus several framework classes for checking 
constraints and reporting constraint violations (see Figure 2). We next de-
vised a suite of test data for each collection type to run the corresponding 
Java class after applying the constraint checking aspect. This was again done 
manually but we used JUnit [3] [20] to organize the test suites and automate 
test execution. In our JUnit tests, we determined test results based on the 
occurrence of OCL constraints violations detected by the constraint checking 
aspects. If a test execution results in a pre-state constraint violation error 
such as a precondition error, the test data is rejected as invalid because pres-
tate constraints are the client’s obligation. On the other hand, if a test execu-
tion results in a post-state constraint violation error such as a postcondition 
error, it is a test failure; such a constraint violation error means an inconsis-
tency between the constraint and the implementation, as post-state con-
straints are the implementer’s obligations. In essence we used OCL con-
straints as test oracles [7] [10] [29]. Table 1 below summarizes the size of 
various source code given in terms of the numbers of source code lines in-
cluding comment lines. The framework code is a small set of reusable Java 
classes supporting AspectJ constraint checking code (see Section 3). 
 
 

Table 1 Size of source code 
 

Source Code No. of Lines 

OCL constraints 336 

Java base code 1787 

AspectJ checking code 720 

Framework code 143 

JUnit test code 1001 

 
 
The size of the AspectJ constraint checking code excluding the framework is 
about twice of that of the Java code being checked. Below we summarize 
what we learned from our case study (see also Section 5 for discussions on 
some of the issues motioned below).  
 

4-1 Translation of Constraints 

We were able to translate most of the OCL constraints to AspectJ constraint 
checking code. The translation was almost mechanical, though there were 
several problems that we encountered. Perhaps, the most commonly used 
OCL operator is the equality operator, e.g., x = y. How is the OCL equality 
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operator (=) translated to Java? OCL supports only value equality while Java 
supports an additional notion of equality called reference or identity equality. 
There seems to be no universal solution to this problem, but the most general 
approach would be to translate the OCL equality operator to the Java == op-
erator for primitive types such as int and the equals method for object types 
(see an example below); this assumes that each class define an appropriate 
notion of equality for itself by overriding the inherited equals method. The 
problem of this approach, however, is that often two different notions of 
equality are required for the same class. For example, a container class such 
as IdentityHashMap<K,V> compares its key objects for reference equality, 
and thus the translation will be incorrect for such a class. The context of each 
use of the quality operator should determine the translation, which will be-
come a barrier to an automatic translation of constraints. 
 
As mentioned in Section 3.3, OCL uses a three-value logic to handle undefi-
nedness in expressions. Because of this, care should be taken when translat-
ing OCL constraints. As an example, consider the following constraint stating 
that two sequences are equal if both sequences contain the same number of 
elements and the elements are position-wide equal. 
 
context Sequence::equals(s: Sequence(T)): Boolean 
post: result = Sequence{1..self->size()}-> 

 forAll(index: Integer | self->at(index) = s->at(index)) 
 and self->size() = s->size() 

 
The expression Sequence{1..self->size()} denotes a sequence containing all 
the numbers from 1 to self->size() in that order; OCL uses 1-based indices. A 
naïve translation of the above constraint may produce the following Java 
code. 
 
for (int index = 1; index < self.size(); index++) { 

checkPost(self.at(index).equals(s.at(index)); 
} 
checkPost(self.size() == s.size()); 
 
There are two problems with the translated code. First, if the size of self is 
bigger than that of s, then the OCL constraint evaluates to false. For a certain 
index value, the s->at(index) expression will evaluate to an undefined value 
because no element is defined for the index, thus leading to false for self-
>at(index) = s->at(index) and the first conjunct. As a result, the whole expres-
sion will evaluate to false. In the translated Java code, however, one of the 
s.at(index) calls will result in an exception such as an index-out-of-bound ex-
ception, thus the whole expression will evaluate to an undefined value. There-
fore, the translation is incorrect. This problem can be fixed for this particular 
example by moving the second checkPost statement before the for loop 
statement. A similar problem occurs when the argument (s) is undefined or 
null; for a similar reason, the OCL constraint evaluates to false while the Java 
code evaluates to an undefined value by throwing a null-pointer exception. 
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4-2 Effectiveness of the Approach 

Our JUnit tests revealed several errors and deficiencies in both the Java im-
plementation of the OCL collection types and the OCL constraints themselves 
specified in the standard. For example, the following is the behavior of the 
Set::union operation specified in the OCL standard. 

 
context Set(T)::union(s : Set(T)) : Set(T) 
  post: result->forAll(elem | self->includes(elem) or s->includes(elem)) 
  post: self ->forAll(elem | result->includes(elem)) 
  post: s ->forAll(elem | result->includes(elem)) 
 
The result should be the union of the receiver and argument sets. The follow-
ing is the implementation of the union operation by the Dresden OCL Toolkit.  

 
public OclSet<T> union(OclSet<T> aSet) { 

OclSet<T> result; 
result = new OclSet<T>(); 
result.addAll(aSet); 
return result; 

} 
 
Obviously, the above code is incorrect with respect to the standard specifica-
tion, as it returns a new set that contains only the elements of the argument 
set. This and similar kinds of errors were detected by the translated AspectJ 
code as inconsistencies between the OCL constraints and the Java imple-
mentations. 
 
Our case study also revealed an unexpected benefit of using AspectJ-based 
approach. One of the weaknesses of program testing and runtime verification 
is the difficulty of testing or checking missing features. Our AspectJ-based 
approach was able to detect this kind of error. For example, when we trans-
lated and compiled the OCL constraint for the operation Set::union(bag: 
Bag(T)): Bag(T), we received a compilation warning message stating that our 
advice for the constraint has not been applied. This warning was caused be-
cause there was no such method in the implementation; the return type of the 
corresponding Java method was OclSet, not OclBag. It may be possible to 
write AspectJ aspects to check for a presence of features in an implementa-
tion. It would be interesting future work to study the extent of missing features 
that can be detected using aspect-oriented programming.   
 
We also found several deficiencies in OCL specifications of some of the col-
lection operations. For example, operations such as first and last of types 
Sequence and OrderedSet are partial in that they are defined only for non-
empty sequences and ordered sets. However, a precondition asserting this 
fact, e.g., self->nonEmpty(), is missing from the standard [27], as shown be-
low.  
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context Sequence(T):: first():T 

post: result= self->at(1) 
 
The append, preprend, insertAt, and subOrderedSet operations of type Orde-
redSet also have missing preconditions. Missing or loose preconditions were 
detected as errors during test executions; e.g., attempting to access the first 
element of an empty sequence resulted in an exception. While manually 
translating OCL constraints to AspectJ code, we also noticed missing or loose 
postconditions for some operations; e.g., the at operations of Sequence and 
OrderedSet have missing postconditions. Our approach cannot detect the 
problem of weak postconditions, as it is a fundamental problem of an asser-
tion-based approach in that a missing assertion can’t be checked and thus 
detected [6]. 
 

5- DISCUSSION 

In this section we discuss some of the interesting issues, challenges, and 
problems that we encountered. Some are related to OCL itself, and others 
are technical questions that require further investigation.  
 
Inheritance of constraints: The OCL standard specification [27] is silent about 
the inheritance of constraints. However, for a subclass object to behave like a 
superclass object [24], it is reasonable to let a subclass inherit constraints of 
all its superclasses, direct or indirect; e.g., a subclass has to preserve the 
class invariants of its superclasses. We implement the semantics of conjoin-
ing inherited invariants. For this, we use wild cards and patterns in pointcut 
declarations to include join points of (future) subclasses. The invariant point-
cut for class T, for example, is execution(* T+.*(..)); recall that T+ means T 
and all its subtypes. As a result, additional methods of T’s subclasses are 
also checked for T’s invariants. The integrity of the extended state of a sub-
class often depends on that of its inherited state. Thus, it is desirable to check 
the inherited constraints first. We achieve this by explicitly declaring prece-
dence between constraint checking aspects of a subclass and its superclass. 
Unlike invariants, there is no widely-accepted semantics for the inheritance of 
pre and postconditions [17]. It should be noted, however, that our way of 
translating pre and postconditions produces the effect of conjoining inherited 
pre and postconditions, respectively

1
; this semantic interpretation is called a 

partial exception correctness [17]. This is because the pre and postcondition 
checking advice for an overridden method of a superclass is also applied to 
an overriding method of a subclass.  
 
Partial or total correctness. The OCL standard specification [27] is not clear 
about the exact semantics of pre and postconditions regarding program ter-
mination. There are two choices. First, we can consider the postcondition only 

 

1 A similar semantics is produced if an operation has multiple constraints and each constraint is 
translated separately; i.e., pre and postconditions are conjoined, respectively. 
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if the operation terminates. Alternatively, if an operation is invoked in a state 
where its precondition holds, we must show that the operation terminates in a 
state where the postcondition holds. This distinction is called total and partial 
correctness [18]; total correctness requires termination. In Java, a method 
invocation may terminate abruptly by throwing an exception. This is not a 
normal termination, and the result is undefined. According to partial correct-
ness, therefore, such an invocation should not result in a postcondition viola-
tion; however, total correctness demands a postcondition violation. Since 
OCL does not provide a notation for specifying exceptional behavior, we have 
adopted the partial correctness semantics.  
 
Invariants revisited: In Java, a class can have two kinds of methods, instance 
methods and class (a.k.a. static) methods. Since an OCL invariant constrains 
the instances of a class, class methods should not be checked for invariants; 
class methods cannot refer to instance variables anyway. This can be 
achieved by restricting the invariant check pointcut to only instance methods, 
e.g., execution(!static * T+.*(..)). An invariant should be established when an 
object completes its initialization. This in general happens when a constructor 
call returns. But, how about a nested constructor call such as this or super 
call? In theory, such a call shouldn’t be checked for the establishment of an 
invariant, as the object is still under construction. It can be done by rewriting 
the constructor invariant pointcut to: execution(T.new(..)) && !cflowbe-
low(execution(T.new(..)). However, the downside is that reasoning about 
such a call may not be modular because we cannot rely on the invariant. 
There is a similar concern for method calls made during a constructor execu-
tion. Should the invariant be checked before and after such method calls? 
Perhaps, they shouldn’t be, as the object is still under construction. Then 
again, reasoning becomes non-modular and may lead to a whole program 
analysis, as specifications such as invariants and postconditions cannot be 
used in reasoning. Related problems are helper methods and visibility of me-
thods? Should an invariant be preserved by even so-called helper methods? 
These are auxiliary methods introduced to assist in implementing public me-
thods. How about visibility of methods? Do all methods including private me-
thods, regardless of their visibility, have to preserve the invariant? Again, the 
concern is the scope of invariants and the modularity of reasoning. 
 
Side-effect freeness: OCL expressions are not allowed to have side-effects. 
For this, only query operations are allowed in OCL expressions, and all OCL 
standard types such as Integer and Collection are value types. Special care 
should be taken to preserve the side-effect freeness of OCL expressions 
when translating them to Java expressions or statements. For example, the 
append operation of the OCL Sequence type cannot be directly translated to 
the seemingly correct add method of the Java List type. The former creates a 
new sequence while the latter mutates the list; OCL sequences are immuta-
ble while Java lists are mutable. In general, checking side-effect freeness of 
an expression requires a whole program analysis. 
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Advice precedence: When there are multiple advices for the same join point, 
the order in which the advices are applied affects the outcome. AspectJ de-
fines precedence among such advices, based both on the order they appear 
in an aspect and the precedence among multiple aspects. However, it is 
possible for a constraint violation to shadow another violation at the same 
execution point. For example, an exception thrown by a before advice of low-
er precedence is shadowed by an exception thrown by an after advice of 
higher precedence. Thus, a pre-state constraint violation (e.g., a method pre-
condition violation) may be shadowed by a post-state constraint violation (e.g., 
a post-state invariant violation), which is undesirable. Therefore, constraint 
checking advices should be carefully ordered in an aspect. 
 
Avoiding infinite recursion: In OCL a query operation can appear in a con-
straint such as an invariant. If care is not taken while checking such a con-
straint, it may lead to an infinite loop; e.g., evaluating the invariant itself may 
initiate another instance of invariant check (caused by the query method call), 
which again initiates another invariant check, and so on. This kind of infinite 
recursion can be avoided by excluding the join points enclosed in the con-
straint checking aspects from constraint checking pointcuts; i.e., 
cut !cflow(within(*OclChecker)) should be conjoined to the constraint check-
ing pointcuts. 
 

6- RELATED WORK 

Several different approaches are possible for checking design constraints 
such as OCL constraints against implementations. The most common ap-
proach is to map the constraints to the target language by implementing a 
constraint checker in that language and making it a part of the implementation 
(see for example [19]). Constraints may also be mapped to executable asser-
tions if the implementation language provides a facility such as the assert 
macro or statement [1] [16]. Below we discuss previous work known to us that 
utilized aspect-oriented techniques. An important contribution of our work is 
that we explicitly defined translation rules from OCL constructs and expres-
sions to AspectJ code, and we also identified several unresolved problems 
and issues that need to be considered for the translation (see Section 5). 
 
Briand, Dzidek, and Labiche described an approach for automatically instru-
menting OCL constraints in Java using AspectJ [4] [12]. They defined tem-
plates for translating class invariants and operation pre and postconditions to 
AspectJ advices. Their approach explicitly addresses abrupt termination of 
method invocations; class invariants are checked—as such invocations 
should also leave the object in a consistent state—but postconditions are not. 
The approach also supports inheritance of constraints; as in our approach 
class invariants are inherited to subclasses and conjoined. However, their 
implementation strategy is different. For the inheritance of class invariants, for 
example, they inject an invariant checking method to the target class using 
AspectJ’s member introduction facility or static crosscutting (see Section 3-3), 
and the injected method makes a super call to invoke the invariant check me-
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thod of its superclass. Though not explained in their papers, such a super call 
should be made using Java’s reflection facility because the superclass, if not 
instrumented, will not have the invariant check method. This leads to unne-
cessary performance overhead. Worse, the approach doesn’t work for Java 
interfaces because an interface cannot contain any method definitions. Re-
garding operation pre and postconditions, postconditions are inherited to sub-
classes but preconditions are not. The approach didn’t consider OCL 2.0 fea-
tures such as message sending (see Section 3-3). 
 
Richters and Gogolla presented an approach for monitoring OCL constraints 
at run-time [30]. An interesting feature of their approach is that monitoring is 
done at the model level in terms of modeling elements. For this, they mapped 
implementation actions such as method calls to modeling actions such as 
operation invocations and checked the validity of modeling actions using an 
external tool. AspectJ was used to specify pointcuts for state changes and 
constraint check points, such as object creation, attribute modification, and 
association link changes; associations were assumed to be reified to fields. 
Their approach supported only class invariants and operation pre and post-
conditions; private methods were not checked for class invariants. The 
strength of their approach is a clear separation of abstraction levels between 
implementations and their models; a similar benefit was obtained in an asser-
tion-based approach by using a specification-only variable called a model 
variable [2]. However, its weakness is the cost for converting concrete repre-
sentation values to abstract modeling values, as well as its reliance on an 
external, heavyweight tool. In their approach, AspectJ is used only to identify 
constraint check points and extract values at these points. In our approach, 
however, AspectJ is also used to actually check OCL constraints, and these 
checks are performed at the implementation level using concrete values. 
Thus, there is no need to coerce concrete values to abstract values, which 
often becomes very expensive [9]. 
 
Kiviluomua, Koskinen and Mikkonen presented an aspect-oriented approach 
for monitoring the execution of a program using UML behavioral profiles and 
AspectJ [22]. Behavioral profiles consist of class diagrams containing role 
definitions and behavioral rules given as sequence diagrams. The behavioral 
profiles also bind roles to the actual program classes, and they are translated 
to AspectJ aspects. This approach does not use OCL constraints, and it only 
supports translation of role definitions to AspectJ code. 
 
Froihofer et al. reviewed and evaluated different constraint validation ap-
proaches for Java [14]. They discussed handcrafted approaches, code in-
strumentation using OCL and JML [23], aspect-oriented programming, proxy 
implementations, CORBA, and EJBs. Each approach has its own advantages 
and disadvantages; e.g., different approaches have different runtime over-
heads, ranging from a factor of two to more than one hundred. 
 
Demuth and Wilke presented an OCL verification tool called the Dresden 
OCL Toolkit, consisting of a parser, an interpreter, and a Java code generator 
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for OCL [11] [32]. The interpreter can be used to verify OCL constraints by 
interpreting them on a UML model and its implementation. The Java code 
generator generates AspectJ code, which can be executed to verify the OCL 
constraints. One key difference between the Dresden tool and our approach 
is that the Dresden tool tries to generate as much actual implementation code 
as possible from the OCL constraints while our approach generates con-
straints checking code. For example, the Dresden tool translates OCL con-
straints such as def, derive, and body (see Section 3-2) to AspectJ implemen-
tation code, e.g., query methods, rather than to assertion checking code. The 
tool supports Eclipse and several different UML modeling tools.  

7- CONCLUSION 

We proposed runtime checks as a solution to mitigate the problem of decision 
corrosion or design decay in software systems. The key idea of our approach 
is to translate design decisions or constraints formally specified in OCL to 
runtime constraints checking code written in AspectJ. Our aspect-based ap-
proach has several advantages over other assertion-based approaches. For 
example, the constraint checking logic is completely separated from the im-
plementation modules, and the implementation modules are oblivious of the 
constraint checking code, even its existence. Thus, constraints checking code 
can be easily added or removed from an implementation without modifying 
the source code. This will enable runtime checks to be applied to different 
implementations of the same design and also selectively enabled or disabled, 
for example, for production code. 
 
Our case study on the OCL standard collections library confirmed the feasibil-
ity and effectiveness of our approach. We were able to translate most of the 
OCL constraints to AspectJ constraint checking code. The translation was 
almost mechanically. By applying the translated AspectJ constraints checking 
code to a production implementation of the collection library, we were able to 
detect several errors and deficiencies in both the implementation and the 
standard specification itself. For example, the standard OCL specification has 
several collection operations with missing or weak preconditions. We also 
identified problems in OCL itself, such as unclear semantics for specification 
inheritance, and issues related with translating OCL constraints to AspectJ 
code, such as object equality and side-effect freeness of expressions. 
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