

Checking Design Constraints at Run-time

Using OCL and AspectJ

Yoonsik Cheon, Carmen Avila, Steve Roach, and Cuauhtemoc Munoz

TR #09-35

December 2009

Keywords: design constraints, runtime checking, class invariants, pre and postconditions, aspect-oriented

programming, Object Constraint Language (OCL), AspectJ language.

1998 CR Categories: D.2.4 [Software Engineering] Design Tools and Techniquesmodules and

interfaces, object-oriented design methods; D.2.4 [Software Engineering] Software/Program

Verificationassertion checkers, class invariants, formal methods; programming by contract; D.3.2

[Programming Languages] Language Classificationsobject-oriented languages; F.3.1 [Logics and

Meanings of Programs] Specifying and Verifying and Reasoning about Programsassertions, invariants,

pre- and post-conditions, specification techniques.

This is an extended version of a paper appeared in ITNG 2009: 6
th

 International Conference on Information

Technology, April 27-29, 2009, Las Vegas, NV, pages 223-228. To appear in a special issue of the

International Journal of Software Engineering, 2(3):5-28, December 2009.

Department of Computer Science

The University of Texas at El Paso

500 West University Avenue

El Paso, Texas 79968-0518, U.S.A

 1

Checking Design Constraints at Run-time
Using OCL and AspectJ

Yoonsik Cheon
(1)

, Carmen Avila
(1)

, Steve Roach
(1)

, and Cuauhtemoc
Munoz

(1)

(1) Department of Computer Science, University of Texas at El Paso, El Paso, Texas,
U.S.A.

E-mail: {ycheon, sroach}@utep.edu, {ceavila3, cuauhtemocm}@miners.utep.edu

ABSTRACT

Design decisions and constraints of a software system can be specified pre-
cisely using a formal notation such as the Object Constraint Language (OCL).
However, they are not executable, and assuring the conformance of an im-
plementation to its design is hard. The inability of expressing design con-
straints in an implementation and checking them at runtime invites, among
others, the problem of design drift and corrosion. We propose runtime checks
as a solution to mitigate this problem. The key idea of our approach is to
translate design constraints written in a formal notation such as OCL into as-
pects that, when applied to a particular implementation, check the constraints
at run-time. Our approach enables runtime verification of design-
implementation conformance and detects design corrosion. The approach is
modular and plug-and-playable; the constraint checking logic is completely
separated from the implementation modules which are oblivious of the former.
We believe that a significant portion of constraints translation can be auto-
mated.

Keywords: AspectJ, Class invariants, Object Constraint Language, Pre and
postconditions, Runtime checking

1- INTRODUCTION

One of the problems associated with software development and maintenance
is design corrosion [28] or design decay [13]. In general, the corrosion of
software design is proportional to the development and maintenance time
when an initial design of software gets modified to accommodate new or
changed requirements or to correct defects. Frequently, modifications are
implemented by developers other than the original designer, and these de-
velopers might not have complete understanding of the original design. De-
sign corrosion also occurs as the result of code hacks and workarounds, a
common practice of software maintenance. The real problem is that design
corrosion or drift may occur without being noticed by software developers or
maintainers. In short, even with rigorous development and maintenance,
software often loses its original design and becomes difficult to understand
and modify.

 2

The Object Constraint Language (OCL) [27] [33] is a textual notation to speci-
fy constraints or rules that apply to UML models such as class diagrams [31].
It is based on mathematical set theory and predicate logic and can express
relevant information about the systems being modeled that cannot otherwise
be expressed by diagrammatic notations. Using a combination of UML and
OCL, one can build a precise design model that includes detailed design de-
cisions and choices along with the semantics such as class invariants and
operation pre- and postconditions. Such a precise model is the key to a mod-
el-driven development approach [5] [25], the essence of which is to use a
model as the basis of software development.

As a design notation, however, OCL is not executable, and OCL constraints
are not reified to implementation artifacts. This may lead to problems such as
inconsistency during development and maintenance. For example, if design
constraints are not explicitly expressed in source code, source code modifica-
tions may allow deviations from the design constraints due to a developer
oversight or misinterpretation. In this paper we advocate runtime checking as
a partial solution to the problem of design corrosion.

We propose to reify OCL constraints to implementations in a form that can be
executed to detect violations of design constraints, thus design corrosion, at
run-time. As evidenced by the presence of the assert statement in the Java
programming language, runtime assertion checking is recognized as a prac-
tical programming tool and is most effective when assertions are generated
from formal specifications such as OCL constraints. We also hypothesize that,
with a suitable framework in place, a wide class of important design con-
straints and properties written in OCL can be automatically translated to run-
time checking code.

However, for runtime constraint checking to be effective and practical, it must
satisfy several requirements including transparency, modularity, and plug-
and-playability. Transparency is essential for any kind of runtime checks. The
execution of checking code should be transparent in that, unless a constraint
is violated and except for performance measures such as time and space, the
behavior of the program should not be changed; that is, the checking code
should be free from side effects. The other two requirements are practical
considerations. Modularity implies that constraint checking code is organized
into modules separated from the program to improve maintainability by en-
forcing boundaries between the checking code and the program. This elimi-
nates in-line assertions such as assert statements as a viable implementation
approach. Constraint checking should be plug-and-playable so that the
checking code can be added or removed from an implementation without
modifying the source code. This will enable the checking code to be applied
to different implementations of the same design and also selectively enabled
or disabled, for example, for production code.

 3

Our approach is aspect-based in that we translate OCL constraints to As-
pectJ aspects, which exist separately from the design implementation. As-
pectJ [21] is an aspect-oriented extension of the Java programming language
(see Section 2-2). We call such an aspect a constraint checking aspect. The
beauty of our approach is that the implementation is independent of the con-
straint checking aspects. However, when compiled with the aspects, it will be
checked for OCL constraints at appropriate execution points at run-time. This
leads to more cohesive and readable implementations. In summary, our ap-
proach is modular and plug-and-playable. These are the main benefits of us-
ing AspectJ as an instrumentation language and differentiate our approach
from assertion-based approaches. Another contribution of our work is that we
define translation rules from OCL to AspectJ and identify several issues in the
use of AspectJ as an instrumentation language.

The remainder of this paper is structured as follows. In Section 2 we give
background information on UML, OCL, and AspectJ needed to read the rest
of this paper. We also introduce a simple program consisting of three classes
to be used as a running example. In Section 3 we describe our approach by
first explaining the organization of constraint checking code and then illustrat-
ing translations of key OCL constructs and expressions to AspectJ. In Section
4 we describe a case study used to evaluate our approach. In Section 5, we
discuss several interesting issues and problems that we encountered during
our study. We conclude our paper with related work in Section 6.

Figure 1 A round manager application

2- BACKGROUND

2-1 UML and OCL

The Unified Modeling Language (UML) [31] is a standard modeling language
for writing a software system’s blueprints, including its structure and behavior.
It uses diagrammatic notations to express various design aspects of a soft-
ware system; UML 2.0 has 13 different types of diagrams. The diagram
shown in Figure 1, for example, is a UML class diagram for an application
that keeps track of golf rounds played by a golfer. A class diagram describes
the static structure of a system in terms of its components and their relation-

 4

ships. This diagram shows three classes (RoundManager, Course, and
Round) and relationships among them. A round manager is composed of a
set of courses and an ordered collection of rounds, and each round is asso-
ciated with a course.

A UML diagram alone, however, cannot express a rich semantics of and all
relevant information about an application. The class diagram above, for ex-
ample, doesn’t express the fact that each round was played on a golf course
known to the round manager. It is very likely that a system built based only on
the diagrams will be incorrect. Thus, there is a need for describing additional
constraints on the objects and entities present in the model.

OCL [33] is a textual, declarative notation to specify constraints or rules that
apply to UML models such as class diagrams. OCL is based on mathematical
set theory and predicate logic. The fact that each round should have been
played on a known course can be expressed in OCL as follows.

context RoundManager
 inv: rounds->forAll(r: Round | self.courses.includes(r.course))

As shown, an OCL constraint is preceded by a context specification that iden-
tifies the UML model being constrained, in this case RoundManager. As indi-
cated by the keyword inv, this constraint, called an invariant, states a fact that
should be always true in the model. The keyword self denotes the object be-
ing constrained by an OCL expression, called a contextual instance; in this
case it is an instance of the RoundManager class. Note that due to their mul-
tiplicities, the rounds and courses aggregations are viewed as collections,
and thus one can use collection operations such as forAll and includes. OCL
comes with several primitive types such as Integer, Real, Boolean, and String
and collection types such as Collection, Set, OrderedSet, and Sequence (see
Section 4). The example uses collections opertations such as forAll and in-
cludes; the forAll operation tests whether an expression is true for all objects
of a given collection, and the includes operation tests whether an object is
contained in a collection.

It is also possible to specify the behavior of an operation in OCL. For example,
the following OCL constraints specifies the behavior of an operation named
addRound by writing a pair of predicates called pre and postconditions.

context RoundManager::addRound(r: Round): void
 pre: courses->includes(r.course)
 post: rounds = rounds@pre->append(r)

The pre and postconditions pair states that, given a round played on a known
course, the operation should append the round to the list of known rounds.
The postfix operator @pre denotes the value of a property (rounds) in the
pre-state, i.e., just before an operation invocation. The OCL append operation
adds an object to the end of an ordered collection.

 5

2-2 AspectJ

AspectJ [1] [21] is an aspect-oriented extension for the Java programming
language to address crosscutting concerns. A crosscutting concern is a sys-
tem-level, peripheral requirement that must be implemented by multiple pro-
gram modules, thereby leading to tangled and scattered code. Examples of
crosscutting concerns include logging, security, persistence, and concurrency.
AspectJ provides built-in language constructs for implementing crosscutting
concerns in a modular way. The key idea is to denote a set of execution
points, called join points, and introduce an additional behavior, called an ad-
vice, at the join points. The following code shows an AspectJ aspect that
checks the precondition of the addRound method described earlier.

public aspect PreconditionChecker {
 pointcut addRoundExe(RoundManager m, Round r):
 execution(void RoundManager.addRound(Round)) && this(m) &&
args(r);

 before(RoundManager m, Round r): addRoundExe(m, r) {
 if (!m.hasCourse(r.getCourse()))
 throw new RuntimeException("precondition error");
 }
}

The pointcut declaration designates a set of execution points and optionally
exposes certain values at those execution points. The pointcut addRoundExe
denotes executions of the addRound method and exposes the receiver (m)
and the argument (r). The before keyword introduces an advice that is to be
executed before the execution of a join point; there are also after and around
advices [21]. In the example, the advice is executed right before the execu-
tion of the addRound method and checks its precondition by referring to the
values exposed at that join point. If the RoundManager class is compiled with
the above aspect, all invocations of the addRound method that violate the
precondition will be detected and result in runtime exceptions. One advantage
of aspect-oriented programming is that the base code such as the RoundMa-
nager class doesn’t depend on the aspect code such as the Precondition-
Checker aspect; in fact, the former is oblivious of the later in that it doesn’t
even know the existence of the aspect. In summary, aspect-oriented pro-
gramming provides a modular solution to crosscutting concerns.

3- APPROACH

In this section we explain our approach to monitoring design constraints by
applying it to the round manager application. We first describe how we organ-
ize our AspectJ code and then explain how we translate OCL constructs and
expressions to AspectJ checking code. Figure 2 shows our framework for
checking OCL constraints. For each class we have a separate aspect that
advises the class. This aspect, called a constraint checking aspect, is re-

 6

sponsible for checking all OCL constraints specified for the class. Each con-
straint checking aspect is defined to be a subclass of an abstract class,
OclChecker. This class provides a set of utility methods, such as a mechan-
ism for reporting constraint violations, to constraint checking aspects. It uses
the strategy design pattern [15] to separate constraint checking from violation
reporting and to select a reporting mechanism appropriate for a particular
application; for example, a constraint violation may be reported by throwing
an exception, logging it, or notifying it to another program. OCL constraints
are side-effect free, and there is no code dependency between the class be-
ing checked and its constraint checking aspect. The class is independent of
the aspect, and the same aspect can be applied to different implementations
of the same design. Constraint checking can also be easily added or removed
by recompiling the source code. These are the main benefits of using AspectJ
as an instrumentation language. In the following subsection we show a sam-
ple constraint checking aspect.

Figure 2 Framework for checking OCL constraints

3-1 Illustration

To illustrate our approach, let us consider the following OCL constraint that
specifies the behavior of the course() method of the RoundManager class.

context RoundManager::course(): Set(Course)
 post: result = courses

The keyword result denotes the return value of the operation. Figure 3 shows
the constraint checking aspect for the RoundManager class. It only shows
code snippet relevant for the checking of the above OCL constraint. The as-
pect is declared to be privileged, which means that it bypasses Java lan-
guage access checking and thus can access private members. This allows
the aspect, for example, to access private fields such as courses used in the
postcondition.

As shown, an OCL constraint is translated to pointcuts and advices, often
along with helper fields or methods. The pointcuts define execution points at
which constraint checks are to be performed, and the advices perform con-
straint checks. It is also common that pointcuts expose several values such

 7

as the receiver and arguments at the execution points so that they can be
referred to in the constraint checking advices. For example, the pointcut cour-
sesExe exposes the receiver, a RoundManager, on which the courses me-
thod is invoked. The advices check OCL constraints and thus are often direct
translations of the constraints. In the example, a special form of the after ad-
vice was used to refer to the return value; this after-returning advice gets ex-
ecuted only if the join point returns normally without throwing an exception. A
constraint violation, if detected, is reported by calling a framework method
such as checkPost; the AspectJ pseudo variable thisJoinPoint denotes the
join point currently being advised, i.e., an invocation of the course() method.
The framework method inherited from the abstract class OclChecker checks
the given condition and reports an appropriate constraint violation, e.g., by
throwing an exception.

public privileged aspect RoundManagerOclChecker extends OclChecker {

 pointcut coursesExe(RoundManager m):
 this(m) && execution(Set<Course> RoundManager.courses());

 after(RoundManager m) returning (Set<Course> s): coursesExe(m) {
 checkPost(s.equals(m.courses), "post: result = courses", thisJoinPoint);
 }
}

Figure 3 Constraint checking aspect

In the next two subsections we explain how we translate OCL constructs and
expressions to AspectJ pointcuts and advices.

3-2 Translating OCL Constructs

Here we describe our approach for translating various OCL constructs such
as class invariants and operation pre and postconditions.

Invariants: An invariant is a boolean expression that states a condition that
must always be met by all instances of the type for which it is defined [33].
The question is when to check an invariant. Since an invariant constrains the
state of an object and an object’s state is represented by fields, an invariant
may be checked whenever fields get new values. For example, an OCL inva-
riant “context Round inv: score > 0,” stating that the score must be positive,
may be translated to the following AspectJ advice; the keyword set denotes
an execution point at which a new value is assigned to a field.

after(Round r): set(int Round.score) && this(r) {
 checkInv(r.score > 0);
}

 8

This approach, however, has several problems. First, it does not work for ob-
jects with reference fields. The states of such objects may be changed indi-
rectly by mutating the contained objects, i.e., field objects. This kind of state
changes cannot be captured using the set pointcut because they occur with-
out assigning new values to the fields of objects under consideration. Second,
the approach is too restrictive. It ignores Java’s control structures and ab-
straction mechanisms and does not provide for internal or hidden program
states. For example, a temporary violation of an invariant in hidden program
states such as during the execution of a method body is not allowed. As a
result, a circular data structure cannot be created because its creation re-
quires more than one assignment and the first assignment may lead to an
invariant violation. Third, the approach may be inefficient, as every assign-
ment to a field has to be checked for an invariant violation.

To remedy the aforementioned problems, we follow the Design by Contract
principle [26] where a class invariant must be established upon the comple-
tion of an object construction and be preserved by every method invocation
on the object. In other words, an invariant should be established by a con-
structor of a class and be preserved by every method of the class.

We translate an invariant into a pair of before and after advices. The before
advice checks the invariant on the pre-state, i.e., right before the execution of
the invoked method, and the after advice checks the invariant on the post-
state, i.e., right after the execution of the invoked method or constructor. For
example, the OCL invariant on the RoundManager class in Section 2-1 stat-
ing that each round should be played on a known course can be translated to
the following AspectJ code.

pointcut constructorExe(RoundManager m):

this(m) && execution(RoundManager.new(..));

pointcut methodExe(RoundManager m):
this(m) && execution(* RoundManager+.*(..));

before(RoundManager m): methodExe(m) {
 checkAllInv(m);
}

after(RoundManager m): constructorExe(m) || methodExe(m) {
 checkAllInv(m);
}

private void checkAllInv(RoundManager m) {
 for (Round r: m.rounds)
 checkInv(m.courses.contains(r.getCourse()));
}

 9

In the pointcut declarations wild card symbols (“*” and “..”) are used to denote
executions of any constructor or method, regardless of its name, return type,
or arguments; the keyword new denotes a constructor. In the pointcut metho-
dExe, the notation RoundManager+ denotes the class RoundManager and all
its subclasses. The intention is to make the invariant be preserved by sub-
classes. That is, the invariant should also be maintained by the additional
methods of subclasses—methods that are overridden or introduced by sub-
classes (see Section 5 for a discussion on constraints inheritance). Note also
that the before advice is applied only to method executions, but not to con-
structor executions.

Pre and postconditions: The pre and postconditions specify the behavior of
an operation and should be checked right before and after the execution of
the operation. They can be translated to a pair of before and after advices
(see earlier examples in Sections 2-2 and 3-1) or to a single around advice.
An around advice is the most powerful kind of advice and surrounds a join
point such as a method execution. It can perform custom behavior before and
after the join point and is also responsible for choosing whether to proceed to
the join point or to shortcut executing it by returning its own return value or
throwing an exception. For example, the pre and postconditions of the ad-
dRound method of the RoundManager class can be translated to the follow-
ing around advice (see Section 2-1).

pointcut addRoundExe(RoundManager m, Round r):
 this(m) && args(r) && execution(void RoundManager.addRound(Round));

void around(RoundManager m, Round r): addRoundExe(m, r) {
 // pre: course->includes(r.course)

checkPre(m.courses.contains(r.getCourse()));

 List<Round> oldRounds = new ArrayList<Round>();
oldRounds.addAll(m.rounds); // rounds@pre

 proceed(m, r);
oldRounds.add(r);

// post: rounds = rounds@pre->append(r)
 checkPost(m.rounds.equals(oldRounds));
}

Note that the pointcut declaration exposes the receiver and the argument so
that they can be referred to in the advice. The advice first checks the precon-
dition, proceeds to continue with the normal flow of execution at the corres-
ponding join point (as indicated by the keyword proceed), and finally checks
the postcondition. If there is any pre-state value referenced in the postcondi-
tion (e.g., self@pre), it is cloned or copied to a local variable in the pre-state
(i.e., prior to proceeding) so that they can be used for the postcondition check
in the post-state (see Section 5 for a discussion on this).

 10

Initialization: The OCL init construct specifies the initial value of an attribute or
association end, both of which are usually mapped to Java fields. For exam-
ple, the following constraint states that the initial value of the attribute course
of the RoundManager must be an empty set.

context RoundManager::courses
 init: Set{}

The init construct can be translated to an after advice on constructor execu-
tions, which is the point when an object completes its initialization. For exam-
ple, the above constraint is translated to the following AspectJ code.

pointcut constructorExe(RoundManager m):

this(m) && execution(RoundManager.new());

after(RoundManager m): constructorExe(m) {
 checkInit(new Set<Round>.equals(m.courses));
}

Definition, derivation, and operation body: The def construct introduces a new
attribute or query operation to a UML model such as a class diagram. It also
specifies the value of the new attribute or the return value of the new query
operation. For example, the following OCL statement introduces a new query
operation named rounds to the RoundManager class. The operation takes a
course and returns all the rounds played on that course.

context RoundManager

def: rounds(c: Course): Sequence(Round) = rounds->select(r: Round |
 r.course.name = c.name)

The OCL collection operation select returns a new collection consisting of all
the elements from a collection that satisfy a given condition. As the OCL def
construct constrains the result of a newly-introduced operation, it is translated
to an after-returning advice that is applied only when the corresponding join
point terminates normally without throwing an exception, as shown below.

pointcut roundsCourseExe(RoundManager m, Course c):

this(m) && args(c)
 && execution(List<Round> RoundManager.rounds(Course));

after(RoundManager m, Course c) returning (List<Round> l):
 roundsCourseExe(m, c) {
 List<Round> expected = new ArrayList<Round>();
 for (Round r: m.rounds)
 if (r.getCourse().equals(c))
 expected.add(r);
 checkDef(l.equals(expected));
}

 11

In the case of an attribute definition, it states how the value of the newly-
introduced attribute must be calculated. For example, we may introduce a
new attribute named numOfRounds to explicitly keep track of the number of
known rounds, as follows.

context RoundManager
 def: numOfRounds: Integer = rounds.size()

The translation of an attribute definition depends on how the newly-introduced
attribute is implemented in the program. If it is implemented as a query me-
thod, it can be translated to an after-returning advice that checks the return
value. On the other hand, if it is implemented as a field, it can be translated to
a check that is executed when the field is read, as follows.

after(RoundManager m) returning (int r):
 this(m) && get(int RoundManager.numOfRounds) {
 checkDef(r == m.rounds.size());
}

OCL has two more constructs. The derive construct specifies the value of a
derived attribute or association end. Its translation is similar to that of the
attribute definition. The body construct defines the result of a query operation,
and thus it can be treated like an operation definition.

3-3 Translating OCL Expressions

We believe that, given a mapping between OCL modeling elements and Java
implementation artifacts, most OCL expressions can be systematically trans-
lated to AspectJ expressions and statements. The operators of OCL built-in
types such as Boolean and Integer can be semi-automatically translated to
corresponding operators of Java. It should be noted, however, that OCL uses
a three-value logic to handle undefinedness [27], and thus care should be
taken when translating Boolean expressions. For example, an OCL expres-
sion x or y cannot be directly translated to the corresponding Java expression
x || y. If x becomes undefined, the result is y for the OCL case, while it is un-
defined for Java; in Java, for example, if the evaluation of x encounters an
exception then the evaluation of the whole expression terminates abruptly by
throwing the exception. The OCL expression should be translated to a block
of code such as the following, where r contains the result [8]:

boolean r = false;
try { r = EVAL(x); } catch (Exception e) {}
if (!r) { r = EVAL(y); }

As shown above, collection operations such as forAll, select, includes, and
appends may also be systematically translated to Aspect code. Since Java
doesn’t support blocks or closures to specify the conditions, iteration opera-

 12

tions such as forAll and select must be transformed into sequences of state-
ments.

OCL also has an interesting operator that can be used only in the postcondi-
tion. The hasSent operator, denoted “ˆ”,specifies that a certain interaction has
taken place during the execution of an operation. The expression
self.addRound(r) in the second postcondition below becomes true if an ad-
dRound message with argument r was sent to self during the execution of the
operation. It constrains the traces of an operation execution and can be used
to prescribe that the operation be implemented in terms of the ad-
dRound(Round) operation.

context RoundManager::addRound(s: Sequence(Round)): void
 pre: s->forAll(r: Round | self.courses->includes(r.course))
 post: rounds = rounds@pre->union(s)
 post: s->forAll(r: Round | self^addRound(r))

It is instructive to show how an OCL expression consisting of message send-
ing can be translated to an AspectJ check. The core of our solution is to in-
troduce another advice to trace the execution of the operation and detect the
required message sending. However, it is a bit involved because the two ad-
vices—execution tracing and constraint checking—have to communicate with
each other and the execution of the operation may be recursive.

The tracing advice for the above example is shown below. In essence, it
records each round object that was used as an argument to the ad-
dRound(Round) method during an execution of the addRound(List<Round>)
method on a field oclMessages.

private Set<Round> RoundManager.oclMessages = null;

pointcut addRoundListExe():
 execution(void RoundManager.addRound(List<Round>));

pointcut addRoundNestedExe(RoundManager m, Round r):
 this(m) && args(r) && cflowbelow(addRoundListExe())
 && execution(void RoundManager.addRound(Round));

after(RoundManager m, Round r): addRoundNestedExe(m, r) {
 m.oclRoundMessages.add(r);
}

The first statement, known as static crosscutting, introduces a new field
named oclMessages to the RoundManager class. The pointcut addRound-
NestedExe denotes an execution of the addRound(Round) method occurring
during an execution of the addRound(List<Round>) method; the keyword
cflowbelow denotes all the join points enclosed by the argument join point.

 13

The constraint checking advice shown below uses the information accumu-
lated by the tracing advice. For this, it refers to the newly introduced field
oclMessages.

void around(RoundManager m, List<Round> l):

this(m) && args(r) && addRoundListExe() {

 Set<Round> oldMessages = m.oclMessages;
m.oclMessages = new HashSet<Round>();

proceed(m, l);

 checkPost(m.oclMessages.containsAll(l));
 if (oldMessages != null)
 m.oclMessage.addAll(oldMessages);
 else
 m.oclMessages = null;
}

One complication is that because the join point (i.e., execution of the ad-
dRound(List<Round>) method) may be executed recursively, we have to
save and restore the value of the field oclMessages before and after proceed-
ing to the join point. Upon the completion of the join point execution, we also
update the information stored in the field oclMessages; all the messages that
were sent during a recursive execution were also sent during the execution
that initiated the recursion.

4- CASE STUDY

We performed a case study to evaluate the feasibility and effectiveness of our
approach. An initial challenge was to find an open-source Java application
that has a formal UML model including class diagrams and OCL constraints.
Instead of writing a small sample program by ourselves we decided to use an
existing program to eliminate subjectivenss in the experiment and to make
the case study more realistic. The OCL standard specification defines several
collection types such as Collection, Set, OrderedSet, Bag and Sequence [27].
The OCL collection types are organized into a class hierarchy, and the beha-
vior of each type is formally specified in OCL in the standard specification.
We also found a couple of Java implementations of the OCL collection types
[1] [11]; they are to facilitate an interpretation or translation of OCL constraints.
We decided to use the one from the Dresden OCL Toolkit [11] [32] for our
case study (see Section 6 for a discussion of the Dresden OCL Toolkit). This
implementation consists of five generic classes: OclCollection<T>, OclSet<T>,
OclBag<T>, OclOrderedSet<T>, and OclSequence<T>. All classes are im-
mutable in that no method can change the states of objects. All collection op-
erations specified in the standard are implemented except for iterator opera-
tions such as forAll that take OCL expressions as parameters and work on
each element of a collection. This is because Java doesn’t support this kind
of higher-order methods.

 14

The objective of our case study was to detect inconsistencies between OCL
constraints of the collection types and the Java implementations. For our
case study, we first translated OCL constraints on collection types into As-
pectJ constraint checking code by following the translation rules described in
Section 4. This was done manually and resulted in one constraint checking
aspect per OCL collection type plus several framework classes for checking
constraints and reporting constraint violations (see Figure 2). We next de-
vised a suite of test data for each collection type to run the corresponding
Java class after applying the constraint checking aspect. This was again done
manually but we used JUnit [3] [20] to organize the test suites and automate
test execution. In our JUnit tests, we determined test results based on the
occurrence of OCL constraints violations detected by the constraint checking
aspects. If a test execution results in a pre-state constraint violation error
such as a precondition error, the test data is rejected as invalid because pres-
tate constraints are the client’s obligation. On the other hand, if a test execu-
tion results in a post-state constraint violation error such as a postcondition
error, it is a test failure; such a constraint violation error means an inconsis-
tency between the constraint and the implementation, as post-state con-
straints are the implementer’s obligations. In essence we used OCL con-
straints as test oracles [7] [10] [29]. Table 1 below summarizes the size of
various source code given in terms of the numbers of source code lines in-
cluding comment lines. The framework code is a small set of reusable Java
classes supporting AspectJ constraint checking code (see Section 3).

Table 1 Size of source code

Source Code No. of Lines

OCL constraints 336

Java base code 1787

AspectJ checking code 720

Framework code 143

JUnit test code 1001

The size of the AspectJ constraint checking code excluding the framework is
about twice of that of the Java code being checked. Below we summarize
what we learned from our case study (see also Section 5 for discussions on
some of the issues motioned below).

4-1 Translation of Constraints

We were able to translate most of the OCL constraints to AspectJ constraint
checking code. The translation was almost mechanical, though there were
several problems that we encountered. Perhaps, the most commonly used
OCL operator is the equality operator, e.g., x = y. How is the OCL equality

 15

operator (=) translated to Java? OCL supports only value equality while Java
supports an additional notion of equality called reference or identity equality.
There seems to be no universal solution to this problem, but the most general
approach would be to translate the OCL equality operator to the Java == op-
erator for primitive types such as int and the equals method for object types
(see an example below); this assumes that each class define an appropriate
notion of equality for itself by overriding the inherited equals method. The
problem of this approach, however, is that often two different notions of
equality are required for the same class. For example, a container class such
as IdentityHashMap<K,V> compares its key objects for reference equality,
and thus the translation will be incorrect for such a class. The context of each
use of the quality operator should determine the translation, which will be-
come a barrier to an automatic translation of constraints.

As mentioned in Section 3.3, OCL uses a three-value logic to handle undefi-
nedness in expressions. Because of this, care should be taken when translat-
ing OCL constraints. As an example, consider the following constraint stating
that two sequences are equal if both sequences contain the same number of
elements and the elements are position-wide equal.

context Sequence::equals(s: Sequence(T)): Boolean
post: result = Sequence{1..self->size()}->

 forAll(index: Integer | self->at(index) = s->at(index))
 and self->size() = s->size()

The expression Sequence{1..self->size()} denotes a sequence containing all
the numbers from 1 to self->size() in that order; OCL uses 1-based indices. A
naïve translation of the above constraint may produce the following Java
code.

for (int index = 1; index < self.size(); index++) {

checkPost(self.at(index).equals(s.at(index));
}
checkPost(self.size() == s.size());

There are two problems with the translated code. First, if the size of self is
bigger than that of s, then the OCL constraint evaluates to false. For a certain
index value, the s->at(index) expression will evaluate to an undefined value
because no element is defined for the index, thus leading to false for self-
>at(index) = s->at(index) and the first conjunct. As a result, the whole expres-
sion will evaluate to false. In the translated Java code, however, one of the
s.at(index) calls will result in an exception such as an index-out-of-bound ex-
ception, thus the whole expression will evaluate to an undefined value. There-
fore, the translation is incorrect. This problem can be fixed for this particular
example by moving the second checkPost statement before the for loop
statement. A similar problem occurs when the argument (s) is undefined or
null; for a similar reason, the OCL constraint evaluates to false while the Java
code evaluates to an undefined value by throwing a null-pointer exception.

 16

4-2 Effectiveness of the Approach

Our JUnit tests revealed several errors and deficiencies in both the Java im-
plementation of the OCL collection types and the OCL constraints themselves
specified in the standard. For example, the following is the behavior of the
Set::union operation specified in the OCL standard.

context Set(T)::union(s : Set(T)) : Set(T)
 post: result->forAll(elem | self->includes(elem) or s->includes(elem))
 post: self ->forAll(elem | result->includes(elem))
 post: s ->forAll(elem | result->includes(elem))

The result should be the union of the receiver and argument sets. The follow-
ing is the implementation of the union operation by the Dresden OCL Toolkit.

public OclSet<T> union(OclSet<T> aSet) {

OclSet<T> result;
result = new OclSet<T>();
result.addAll(aSet);
return result;

}

Obviously, the above code is incorrect with respect to the standard specifica-
tion, as it returns a new set that contains only the elements of the argument
set. This and similar kinds of errors were detected by the translated AspectJ
code as inconsistencies between the OCL constraints and the Java imple-
mentations.

Our case study also revealed an unexpected benefit of using AspectJ-based
approach. One of the weaknesses of program testing and runtime verification
is the difficulty of testing or checking missing features. Our AspectJ-based
approach was able to detect this kind of error. For example, when we trans-
lated and compiled the OCL constraint for the operation Set::union(bag:
Bag(T)): Bag(T), we received a compilation warning message stating that our
advice for the constraint has not been applied. This warning was caused be-
cause there was no such method in the implementation; the return type of the
corresponding Java method was OclSet, not OclBag. It may be possible to
write AspectJ aspects to check for a presence of features in an implementa-
tion. It would be interesting future work to study the extent of missing features
that can be detected using aspect-oriented programming.

We also found several deficiencies in OCL specifications of some of the col-
lection operations. For example, operations such as first and last of types
Sequence and OrderedSet are partial in that they are defined only for non-
empty sequences and ordered sets. However, a precondition asserting this
fact, e.g., self->nonEmpty(), is missing from the standard [27], as shown be-
low.

 17

context Sequence(T):: first():T

post: result= self->at(1)

The append, preprend, insertAt, and subOrderedSet operations of type Orde-
redSet also have missing preconditions. Missing or loose preconditions were
detected as errors during test executions; e.g., attempting to access the first
element of an empty sequence resulted in an exception. While manually
translating OCL constraints to AspectJ code, we also noticed missing or loose
postconditions for some operations; e.g., the at operations of Sequence and
OrderedSet have missing postconditions. Our approach cannot detect the
problem of weak postconditions, as it is a fundamental problem of an asser-
tion-based approach in that a missing assertion can’t be checked and thus
detected [6].

5- DISCUSSION

In this section we discuss some of the interesting issues, challenges, and
problems that we encountered. Some are related to OCL itself, and others
are technical questions that require further investigation.

Inheritance of constraints: The OCL standard specification [27] is silent about
the inheritance of constraints. However, for a subclass object to behave like a
superclass object [24], it is reasonable to let a subclass inherit constraints of
all its superclasses, direct or indirect; e.g., a subclass has to preserve the
class invariants of its superclasses. We implement the semantics of conjoin-
ing inherited invariants. For this, we use wild cards and patterns in pointcut
declarations to include join points of (future) subclasses. The invariant point-
cut for class T, for example, is execution(* T+.*(..)); recall that T+ means T
and all its subtypes. As a result, additional methods of T’s subclasses are
also checked for T’s invariants. The integrity of the extended state of a sub-
class often depends on that of its inherited state. Thus, it is desirable to check
the inherited constraints first. We achieve this by explicitly declaring prece-
dence between constraint checking aspects of a subclass and its superclass.
Unlike invariants, there is no widely-accepted semantics for the inheritance of
pre and postconditions [17]. It should be noted, however, that our way of
translating pre and postconditions produces the effect of conjoining inherited
pre and postconditions, respectively

1
; this semantic interpretation is called a

partial exception correctness [17]. This is because the pre and postcondition
checking advice for an overridden method of a superclass is also applied to
an overriding method of a subclass.

Partial or total correctness. The OCL standard specification [27] is not clear
about the exact semantics of pre and postconditions regarding program ter-
mination. There are two choices. First, we can consider the postcondition only

1 A similar semantics is produced if an operation has multiple constraints and each constraint is
translated separately; i.e., pre and postconditions are conjoined, respectively.

 18

if the operation terminates. Alternatively, if an operation is invoked in a state
where its precondition holds, we must show that the operation terminates in a
state where the postcondition holds. This distinction is called total and partial
correctness [18]; total correctness requires termination. In Java, a method
invocation may terminate abruptly by throwing an exception. This is not a
normal termination, and the result is undefined. According to partial correct-
ness, therefore, such an invocation should not result in a postcondition viola-
tion; however, total correctness demands a postcondition violation. Since
OCL does not provide a notation for specifying exceptional behavior, we have
adopted the partial correctness semantics.

Invariants revisited: In Java, a class can have two kinds of methods, instance
methods and class (a.k.a. static) methods. Since an OCL invariant constrains
the instances of a class, class methods should not be checked for invariants;
class methods cannot refer to instance variables anyway. This can be
achieved by restricting the invariant check pointcut to only instance methods,
e.g., execution(!static * T+.*(..)). An invariant should be established when an
object completes its initialization. This in general happens when a constructor
call returns. But, how about a nested constructor call such as this or super
call? In theory, such a call shouldn’t be checked for the establishment of an
invariant, as the object is still under construction. It can be done by rewriting
the constructor invariant pointcut to: execution(T.new(..)) && !cflowbe-
low(execution(T.new(..)). However, the downside is that reasoning about
such a call may not be modular because we cannot rely on the invariant.
There is a similar concern for method calls made during a constructor execu-
tion. Should the invariant be checked before and after such method calls?
Perhaps, they shouldn’t be, as the object is still under construction. Then
again, reasoning becomes non-modular and may lead to a whole program
analysis, as specifications such as invariants and postconditions cannot be
used in reasoning. Related problems are helper methods and visibility of me-
thods? Should an invariant be preserved by even so-called helper methods?
These are auxiliary methods introduced to assist in implementing public me-
thods. How about visibility of methods? Do all methods including private me-
thods, regardless of their visibility, have to preserve the invariant? Again, the
concern is the scope of invariants and the modularity of reasoning.

Side-effect freeness: OCL expressions are not allowed to have side-effects.
For this, only query operations are allowed in OCL expressions, and all OCL
standard types such as Integer and Collection are value types. Special care
should be taken to preserve the side-effect freeness of OCL expressions
when translating them to Java expressions or statements. For example, the
append operation of the OCL Sequence type cannot be directly translated to
the seemingly correct add method of the Java List type. The former creates a
new sequence while the latter mutates the list; OCL sequences are immuta-
ble while Java lists are mutable. In general, checking side-effect freeness of
an expression requires a whole program analysis.

 19

Advice precedence: When there are multiple advices for the same join point,
the order in which the advices are applied affects the outcome. AspectJ de-
fines precedence among such advices, based both on the order they appear
in an aspect and the precedence among multiple aspects. However, it is
possible for a constraint violation to shadow another violation at the same
execution point. For example, an exception thrown by a before advice of low-
er precedence is shadowed by an exception thrown by an after advice of
higher precedence. Thus, a pre-state constraint violation (e.g., a method pre-
condition violation) may be shadowed by a post-state constraint violation (e.g.,
a post-state invariant violation), which is undesirable. Therefore, constraint
checking advices should be carefully ordered in an aspect.

Avoiding infinite recursion: In OCL a query operation can appear in a con-
straint such as an invariant. If care is not taken while checking such a con-
straint, it may lead to an infinite loop; e.g., evaluating the invariant itself may
initiate another instance of invariant check (caused by the query method call),
which again initiates another invariant check, and so on. This kind of infinite
recursion can be avoided by excluding the join points enclosed in the con-
straint checking aspects from constraint checking pointcuts; i.e.,
cut !cflow(within(*OclChecker)) should be conjoined to the constraint check-
ing pointcuts.

6- RELATED WORK

Several different approaches are possible for checking design constraints
such as OCL constraints against implementations. The most common ap-
proach is to map the constraints to the target language by implementing a
constraint checker in that language and making it a part of the implementation
(see for example [19]). Constraints may also be mapped to executable asser-
tions if the implementation language provides a facility such as the assert
macro or statement [1] [16]. Below we discuss previous work known to us that
utilized aspect-oriented techniques. An important contribution of our work is
that we explicitly defined translation rules from OCL constructs and expres-
sions to AspectJ code, and we also identified several unresolved problems
and issues that need to be considered for the translation (see Section 5).

Briand, Dzidek, and Labiche described an approach for automatically instru-
menting OCL constraints in Java using AspectJ [4] [12]. They defined tem-
plates for translating class invariants and operation pre and postconditions to
AspectJ advices. Their approach explicitly addresses abrupt termination of
method invocations; class invariants are checked—as such invocations
should also leave the object in a consistent state—but postconditions are not.
The approach also supports inheritance of constraints; as in our approach
class invariants are inherited to subclasses and conjoined. However, their
implementation strategy is different. For the inheritance of class invariants, for
example, they inject an invariant checking method to the target class using
AspectJ’s member introduction facility or static crosscutting (see Section 3-3),
and the injected method makes a super call to invoke the invariant check me-

 20

thod of its superclass. Though not explained in their papers, such a super call
should be made using Java’s reflection facility because the superclass, if not
instrumented, will not have the invariant check method. This leads to unne-
cessary performance overhead. Worse, the approach doesn’t work for Java
interfaces because an interface cannot contain any method definitions. Re-
garding operation pre and postconditions, postconditions are inherited to sub-
classes but preconditions are not. The approach didn’t consider OCL 2.0 fea-
tures such as message sending (see Section 3-3).

Richters and Gogolla presented an approach for monitoring OCL constraints
at run-time [30]. An interesting feature of their approach is that monitoring is
done at the model level in terms of modeling elements. For this, they mapped
implementation actions such as method calls to modeling actions such as
operation invocations and checked the validity of modeling actions using an
external tool. AspectJ was used to specify pointcuts for state changes and
constraint check points, such as object creation, attribute modification, and
association link changes; associations were assumed to be reified to fields.
Their approach supported only class invariants and operation pre and post-
conditions; private methods were not checked for class invariants. The
strength of their approach is a clear separation of abstraction levels between
implementations and their models; a similar benefit was obtained in an asser-
tion-based approach by using a specification-only variable called a model
variable [2]. However, its weakness is the cost for converting concrete repre-
sentation values to abstract modeling values, as well as its reliance on an
external, heavyweight tool. In their approach, AspectJ is used only to identify
constraint check points and extract values at these points. In our approach,
however, AspectJ is also used to actually check OCL constraints, and these
checks are performed at the implementation level using concrete values.
Thus, there is no need to coerce concrete values to abstract values, which
often becomes very expensive [9].

Kiviluomua, Koskinen and Mikkonen presented an aspect-oriented approach
for monitoring the execution of a program using UML behavioral profiles and
AspectJ [22]. Behavioral profiles consist of class diagrams containing role
definitions and behavioral rules given as sequence diagrams. The behavioral
profiles also bind roles to the actual program classes, and they are translated
to AspectJ aspects. This approach does not use OCL constraints, and it only
supports translation of role definitions to AspectJ code.

Froihofer et al. reviewed and evaluated different constraint validation ap-
proaches for Java [14]. They discussed handcrafted approaches, code in-
strumentation using OCL and JML [23], aspect-oriented programming, proxy
implementations, CORBA, and EJBs. Each approach has its own advantages
and disadvantages; e.g., different approaches have different runtime over-
heads, ranging from a factor of two to more than one hundred.

Demuth and Wilke presented an OCL verification tool called the Dresden
OCL Toolkit, consisting of a parser, an interpreter, and a Java code generator

 21

for OCL [11] [32]. The interpreter can be used to verify OCL constraints by
interpreting them on a UML model and its implementation. The Java code
generator generates AspectJ code, which can be executed to verify the OCL
constraints. One key difference between the Dresden tool and our approach
is that the Dresden tool tries to generate as much actual implementation code
as possible from the OCL constraints while our approach generates con-
straints checking code. For example, the Dresden tool translates OCL con-
straints such as def, derive, and body (see Section 3-2) to AspectJ implemen-
tation code, e.g., query methods, rather than to assertion checking code. The
tool supports Eclipse and several different UML modeling tools.

7- CONCLUSION

We proposed runtime checks as a solution to mitigate the problem of decision
corrosion or design decay in software systems. The key idea of our approach
is to translate design decisions or constraints formally specified in OCL to
runtime constraints checking code written in AspectJ. Our aspect-based ap-
proach has several advantages over other assertion-based approaches. For
example, the constraint checking logic is completely separated from the im-
plementation modules, and the implementation modules are oblivious of the
constraint checking code, even its existence. Thus, constraints checking code
can be easily added or removed from an implementation without modifying
the source code. This will enable runtime checks to be applied to different
implementations of the same design and also selectively enabled or disabled,
for example, for production code.

Our case study on the OCL standard collections library confirmed the feasibil-
ity and effectiveness of our approach. We were able to translate most of the
OCL constraints to AspectJ constraint checking code. The translation was
almost mechanically. By applying the translated AspectJ constraints checking
code to a production implementation of the collection library, we were able to
detect several errors and deficiencies in both the implementation and the
standard specification itself. For example, the standard OCL specification has
several collection operations with missing or weak preconditions. We also
identified problems in OCL itself, such as unclear semantics for specification
inheritance, and issues related with translating OCL constraints to AspectJ
code, such as object equality and side-effect freeness of expressions.

ACKNOWLEDGMENT

Cheon and Avila were supported in part by NSF grants CNS-0509299 and
CNS-0707874, and all authors were supported in part by the Homeland Pro-
tection Institute under Contract No. W9113-08-C-0010 (U.S. Army SMDC).

REFERENCES

[1] AspectJ Project, Available from http://www.eclipse.org/aspjectj/ (last

 22

retrieved on Oct. 2, 2009).

[2] C. Avila, G. Flores, and Y. Cheon, “A Library-based Approach to Trans-
lating OCL Constraints to JML Assertions for Runtime Checking,” Interna-
tional Conference on Software Engineering Research and Practice, July
14-17, 2008, Las Vegas, Nevada, pp. 403–408, 2008.

[3] K. Beck and E. Gamma, “Test Infected: Programmers Love Writing
Tests,” Java Report, vol. 3, no. 7, pp. 37–50, 1998.

[4] L. C. Briand, W. J. Dzidek, and Y. Labiche, “Instrumenting Contracts with
Aspect-oriented Programming to Increase Observability and Support De-
bugging,” Proceedings of the 21st IEEE International Conference on
Software Maintenance, Budapest, Hungary, September 25-30, 2005, pp
687–690, Sept. 2005.

[5] A. W. Brown, “Model Driven Architecture: Principles and Practice,” Soft-
ware and System Modeling, vol. 3, no. 4, pp. 314-327, Dec. 2004.

[6] Y. Cheon, “Automated Random Testing to Detect Specification-Code
Inconsistencies,” Proceedings of the 2007 International Conference on
Software Engineering Theory and Practice, July 9-12, 2007, Orlando,
Florida, U.S.A., pp. 112-119.

[7] Y. Cheon and G. T. Leavens, “A Simple and Practical Approach to Unit
Testing: The JML and JUnit Way,” in ECOOP 2002 — Object-Oriented
Programming, 16th European Conference, M´aalaga, Spain, Proceedings,
ser. Lecture Notes in Computer Science, B. Magnusson, Ed., vol. 2374.
Berlin: Springer-Verlag, pp. 231–255, June 2002.

[8] Y. Cheon and G. T. Leavens, “A Contextual Interpretation of Undefined-
ness for Runtime Assertion Checking,” AADEBUG 2005, Proceedings of
the Sixth International Symposium on Automated and Analysis-Driven
Debugging, Monterey, California, September 19–21, 2005, pp. 149–157.
ACM Press, Sept. 2005.

[9] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards, “Model Va-
riables: Cleanly Supporting Abstraction in Design By Contract,” Software
Practice & Experience, vol. 35, no. 6, pp. 583-599, May 2005.

[10] D. Coppit and J. M. Haddox-Schatz, “On the Use of Specification-based
Assertions as Test Oracles,” Proceedings of the 29th Annual IEEE/NASA
Software Engineering Workshop, pp. 305–314, Apr. 2005.

[11] B. Demuth and C. Wilke, “Model and Object Verification by Using Dres-
den OCL,” Proceedings of the Russian-German Workshop Innovation In-
formation Technologies: Theory and Practice, pages 687-690, July 25-31,
Ufa, Russia, 2009.

[12] W. J. Dzidek, L. C. Briand, and Y. Labiche, “Lessons Learned from De-
veloping a Dynamic OCL Constraint Enforcement Tool for Java,”

 23

ACM/IEEE 8th International Conference on Model Driven Engineering
Languages and Systems, Montego Bay, Jamaica, October 2-7, 2005, vol.
3844 of LNCS, pp. 10–19. Springer-Verlag, 2006.

[13] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison-
Wesley, Aug. 1999.

[14] L. Froihofer, G. Glos, J. Osrael, and K. M. Goeschka, “Overview and
evaluation of constraint validation approaches in Java,” ICSE ’07: Pro-
ceedings of the 29th International Conference on Software Engineering,
pp. 313–322. IEEE Computer Society, 2007.

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, 1994.

[16] A. Hamie, “Translating the Object Constraint Language into the Java
Modeling Language,” Proceedings of the ACM Symposium on Applied
Computing, Nicosia, Cyprus, March 14 -17, 2004, pp. 1531–1535, 2004.

[17] R. Hennicker, H. Hussmann, and M. Bidoit, “On the Precise Meaning of
OCL Constraints,” A. Clark and J. Warmer, editors, Object Modeling with
the OCL, vol. 2263 of LNCS, pp. 69–84. Springer-Verlag, 2002.

[18] C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,” Com-
mun. ACM, vol. 12, no. 10, pp. 576–580,583, Oct. 1969.

[19] H. Hussmann, B. Demuth, and F. Finger, “Modular Architecture for a
Toolset Supporting OCL,“ A. Evans, S. Kent, and B. Selic, editors, UML
2000 — The Unified Modeling Language, Advancing the Standard, York,
UK, October 2000, vol. 1939 of LNCS, pp. 278–293. Springer-Verlag,
2000.

[20] JUnit, Available from http://www.junit.org (last retrieved on Oct. 2, 2009).

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of AspectJ,” J. L. Knudsen, editor, ECOOP 2001
— Object-Oriented Programming 15th European Conference, Budapest,
Hungary, vol. 2072 of LNCS, pp. 327–353. Springer-Verlag, Berlin, June
2001.

[22] K. Kiviluoma, J. Koskinen, and T. Mikkonen, “Run-time Monitoring of
Architecturally Significant Behaviors Using Behavioral Profiles and As-
pects,” ISSTA ’06: Proceedings of the 2006 International Symposium on
Software Testing and Analysis, pp. 181–190, New York, NY, USA, 2006.
ACM.

[23] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary Design of JML: A
Behavioral Interface Specification Language for Java,” ACM SIGSOFT
Soft. Eng. Notes, vol. 31, no. 3, pp. 1–38, Mar. 2006.

[24] B. H. Liskov and J. M. Wing, “A Behavioral Notion of Subtyping,” ACM

 24

Trans. Prog. Lang. Syst., vol. 16, no. 6, pp.1811–1841, Nov. 1994.

[25] T. O. Meservy and K. D. Fenstermacher, “Transforming Software Devel-
opment: An MDA Road Map,” IEEE Computer, vol. 38, no. 9, pp. 52-58,
Sep. 2005.

[26] B. Meyer, “Applying Design by Contract,” Computer, vol. 25, no. 10, pp.
40–51, Oct. 1992.

[27] OMG, UML 2.0 OCL Specification. Object Management Group, Oct. 2003.
Available from http://www.omg.org/docs/ptc/03-10-14.pdf (retrieved on
Oct. 15, 2008).

[28] D. E. Perry and A. L. Wolf, “Foundations for the Study of Software Archi-
tecture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp.
40–52, 1992.

[29] D. K. Peters and D. L. Parnas, “Using Test Oracles Generated from Pro-
gram Documentation,” IEEE Transactions on Software Engineering, vol.
24, no. 3, pp. 161–173, Mar. 1998.

[30] M. Richters and M. Gogolla, “Aspect-oriented Monitoring of UML and
OCL Constraints,” The 4th AOSD Modeling with UML Workshop, San
Francisco, CA, October 20, 2003, 2008. Co-located with UML 2003.

[31] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, second edition, 2004.

[32] Software Technology Group at Technische Universität Dresden, Dresden
OCL Toolkit. Available from http://dresden-ocl.sourceforge.net (last re-
trieved on Oct. 2, 2009).

[33] J. Warmer and A. Kleppe. The Object Constraint Language: Getting Your
Models Ready for MDA. Addison-Wesley, second edition, 2003.

