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Abstract—One weakness of Hoare-style verification techniques
based on first-order predicate logic is that reasoning is back-
ward from postconditions to preconditions. A natural, forward
reasoning is possible by viewing a program as a mathematical
function that maps one program state to another. This functional
program verification technique requires a minimal mathematical
background as it uses equational reasoning based on sets and
functions. Thus, it can be easily taught and used in practice. In
this paper, we formalize a functional program specification and
verification technique and extend it for object-oriented programs.
Our approach allows one to formally specify and verify the
behavior of an object-oriented program in a way that is natural
and closer to the way one reasons about it informally.

I. INTRODUCTION

Considering the ubiquitousness of software and the fre-
quency of software failures, the area of correctness verification
is an important part of the education of computer scientists
and software engineers. There is a real concern with the lack
of rigor and accountability in computer programming and
software engineering [1], and the research agenda for software
engineering states the need for strengthened mathematical
foundation in the work force [2]. The problem extends to the
state of practice in software development outside the university
setting, and universities are partly responsible. The problem is
not new, as shown by the following observation made in 1990
[3]:

... [there is] a fundamental difference between soft-
ware engineers and other engineers. Engineers are
well trained in the mathematics necessary for good
engineering. Software engineers are not trained in
the disciplines necessary to assure high quality soft-
ware.

One of the clear differences between typical programming
courses and most engineering courses is that programming
courses seldom teach or make much use of mathematics [4].
Although students are exposed to logic, the topic’s treatment
is quite shallow, and they are usually unable to apply logic
in a practical setting, e.g., verification or reasoning about the
correctness of programs. Formal program verification is not
integrated in the computer science curriculum. Students may
get a glimpse of it in upper-division software engineering
courses in the form of Hoare-style axiomatic proof [5]. How-
ever, axiomatic proof uses backward reasoning based on the

first-order predicate logic, and most students have difficulty in
learning and applying it.

In this paper we formalize a functional program spec-
ification and verification technique that supports forward
reasoning. The technique requires a minimal mathematical
background by viewing a program as a mathematical function
from one program state to another and by using equational
reasoning based on sets and functions. We believe that the
functional program verification technique can be effectively
integrated into the standard computer science curriculum, from
introductory programming courses to advanced programming
and software engineering courses. It is also our conjecture
that if students become proficient in the functional verification,
they may be able to learn the axiomatic approach easily as a
complementary reasoning technique.

The basis of our work is the Cleanroom Software Engi-
neering, a lightweight or semi-formal approach to software
development, originally developed by Harlan Mills and his
colleagues at IBM [6] [7]. Its name was taken from the
electronics industry, where a physical clean room exists to
prevent introduction of defects during hardware fabrication,
and the method reflects the same emphasis on defect preven-
tion rather than defect removal. Special methods are used at
each stage of the software development—from requirement
specification and design to implementation—to avoid errors.
In particular, it uses specification and verification, where
verification means proving, mathematically, that a program
agrees with its specification [7, Chapter 4].

Our work makes two important contributions in the area of
formal program specification and verification. The first contri-
bution is a formalization of the functional program specifica-
tion and verification. Our work provides a solid mathematical
foundation and framework for functional program verification
that includes a specification notation and formal proof rules.
As mentioned earlier, our technique supports natural, forward
reasoning based on sets and functions. The second contribution
is support for object-orientation. Our technique supports a for-
mal verification of object-oriented programs in the presence of
subclassing and dynamic dispatch. Our technique is modular
in that it does not require re-specification or re-verification of
an existing program when a new subclass is introduced.

The remainder of this paper is organized as follows. In
Section II-A we define a subset of Java, called J,, that includes



(classDecl) — class (ident) [extends (ident)]
' {’ {(memberDecl)} '}’
(memberDecl) — (fieldDecl) | (methDecl)
(fieldDecl) — (varDecl) [= (expr)] ;
(methDecl) — [(type)] (ident) ([(paramDecls)])
f{’ {(stmts)} ’}’
(paramDecls) — (varDecl) {, (varDecl)}
(varDecl) — (type) (ident)
(stmts) — {(stmt)}
(stmt) — (varDecl)
| (assignStmt)

[= (expr)] ;

| (ifStmt)
| (whileStmt)
| (returnStmt)
| 7 {’ (stmts) "}’
(assignStmt) — (expr) = (expr) ;
(ifStmt) — if ( (expr) ) (stmt) [else (stmt)]
(

(whileStmt) — while ( (expr) )
(returnStmt) — return [(expr)] ;
(expr) — (ident)

| (expr) . (expr)

| (expr) . (ident) ([(expr) {, (expr)}])

[

(stmt)

Fig. 1. Syntax of Jy. In the grammar, the notations [] and {} denote an
optional part and a O or more repetition, respectively.

essential features of object-oriented programming languages.
In Section III we introduce the notation for specifying the
behavior of J) programs formally. In particular, we describe
the concurrent assignment notation for documenting both the
function computed by J) code and a programmer’s intention
for the code. In Section IV we describe our verification
technique by first defining proof rules for imperative and
procedural features of J) such as control statements and
methods and then extending them for object-oriented features
such as inheritance and method overriding. In Section V we
discuss abstraction and modularity of reasoning. In Section VI
we mention some of the most related work, and we conclude
our paper in Section VIIL.

II. J: A SUBSET OF JAVA

In this section we define a subset of Java, called J,, for use
as a platform for studying functional program specification
and verification. We define the syntax of J formally and its
semantics informally and also introduce sample J code to be
used throughout this paper.

A. Syntax of Jy

J\ captures essential features of imperative object-oriented
programming languages such as Java. As an imperative lan-
guage, it represents program states with program variables and
manipulate them with control statements such as assignment
statements. As an object-oriented language, it support such
concepts as objects, classes and inheritance. A J) program
consists of a set of classes, and Figure 1 shows the syntax for
declaring a J class.

As in Java, a J class is a sequence of member declarations,
where a member declaration can be a field declaration or a
method declaration. For simplicity, only a few representative
control statements are supported, such as assignment state-
ment, if statement, while statement, and return statement.
Though not shown, built-in types such as boolean and integer

class IntSet {
int[] elems;

IntSet () {
elems = new int[0];

}

int size() {
return elems.length;

}

boolean has (int e) {
boolean r = false;
int i = 0;
while (i < elems.length) {
if (elems[i] == e) {
r = true;

}
i=1i+1;
}
return r;

}

void insert (int e) {
if ('has(e)) {

int[] newElems = new int[elems.length + 1];
int 1 = 0;
while (i < elems.length) {

newElems [1i]

}

= elems[i];

newElems[i] = e;
elems = newElems;
}
}
}
Fig. 2. A sample J) class

as well as array types are supported along with their typical
operators.

A class can be defined to be a subclass of another class. A
subclass inherits all the fields and methods of its superclass. It
can also override inherited methods by redefining them. For a
method invocation, dynamic dispatch is used as in Java based
on the the runtime type of the receiver object.

B. Example

Figure 2 shows sample code written in Jy. It defines a
class IntSet, an abstraction of a set of integers. A set is
represented as an array that is initialized by a constructor
and manipulated by several methods such as size, has, and
insert. In Section III below, we will show how to specify
the behavior of the class formally.

III. SPECIFYING J)

How do we specify the behavior of a program, or a section
of code, written in J? An execution of a J statement produces
a side-effect on a program state by changing the values of
some state variables such as fields and local variables. Thus,
we can model a program execution as a mathematical function
from one program state to another, where a program state is
a mapping from state variables to their values. For example,
consider the following code that swaps the values of x and y.

x = x + y;
y = X -y
X =X~ ¥y;




The execution of the above code can be modeled as a
mathematical function that, given a program state, produces
a new state in which x and y are mapped to the initial values
of v and x, respectively. The rest of the state variables, if any,
are mapped to their initial values; that is, their values remain
the same.

How do we represent such a function? We use a concurrent
assignment, a succinct notation to express a function by only
stating changes in an input state. A concurrent assignment is
written as [z, Z2,..., Ty .,en] and states that
each x;’s new value is e;, evaluated concurrently in the initial
state, i.e., the input state or the state just before executing the
code. The value of a state variable that doesn’t appear in the
left-hand side of a concurrent assignment remains the same.
For example, the function that swaps two variables, x and y, is
written as [z, y := y, 2]. We can use the concurrent assignment
notation to document both the actual function computed by
a section of code and our intention for the code called an
intended function.

The function computed by a program is often partial in that
the code works only for some well-defined input values. We
extend the concurrent assignment notation to also specify such
a partial function. For example, [n! = 0 — avg := sum/n)]
is a state changing function that is defined only for a state in
which x is not zero. In a conditional concurrent assignment
such as above, the condition is evaluated in the initial state.
We often want to specify different functions based on some
conditions. For example, the following intended function de-
termines the sign of the variable x.

= €1,€2,..

[x >0 -> sign :=1
| x < 0 -> sign :=
| else -> sign := 0]

In notation, it’s similar to Dijkstra’s guarded command.
However, the meaning is slightly different as the conditions
are evaluated sequentially from the first to the last; that is, if
more than one condition hold, the function defined is the one
corresponding to the first condition that holds.

A. Annotating Jy code

In J), we annotate the behavior of a program using the
concurrent assignment notation. We write an intended function
for each section of code. For example, the following is an
annotated version of part of the body of the has method of
the IntSet class.

@Q[r := isIn(e, elems, 0)]
@i := 0]
int 1 = 0;
@lr, i :=r || isIn(e, elems, i), anything]
while (i < elems.length) {
Q[lr, 1 :=r || elems[i] == e, 1 + 1]
@lelems[i] == e -> r := true | else —> I]
if (elems[i] == e) {
@[r := true]
r = true;
}
@1 := 1 + 1]
i=1i+1;

class IntSet {

int[] elems;
@[elems := new int[0]]
IntSet () { /x ... x/ }
@[result := elems.length]
int size() { /* ... %/}
@[result := isIn(e, elems)] where
@ isIn(e, a) = isIn(e, a, 0)
@ where isIn(e, a, 1)
@ | i >= a.length -> false
Q | else —> e == a[i] || isIn(e, a, i + 1)
boolean has(int e) { /» ... %/ }
@[has(e) -> I
@ | else -> elems := (any a; isPerm(a, append(elems,e)))]
void insert(int e) { /% ... %/ }
boolean isPerm(int[] a, int b[]) {

@

@ int[] sa = Arrays.copyOf(a, a.length);
Q int[] sb = Arrays.copyOf (b, b.length);
@ Arrays.sort (sa);

@ Arrays.sort (sb);

c] return Arrays.equals(sa, sb);

@

}

@ int[] append(int[] a, int e) {

@ int[] r = Arrays.copyOf(a, a.length + 1);
@ r[a.length] = e;

@ return r;

@

}

Fig. 3. A sample J) class with annotations

An annotation is preceded by an @ symbol to differentiate
it from regular J code, and indentation is used to indicate the
region of code that an intended function annotates.

The top-level intended function states that the new value
of ris isIn(e,elems, 0). A user-defined function isIn
tests if an element (e) is contained in an array (elems)
starting from a given index (0); we will show below how such
a user-defined function can be defined. For a control structure
such as a while statement, we specify the behavior of the
whole structure as well as each of its components. We use the
keyword anything to indicate that we don’t care the final value
of a certain variable, typically a local or incidental variable.
The symbol I denotes an identity function.

In addition to documenting the behavior of each section
of code, we also describe the behavior of a whole method
as its method specification. Figure 3 shows the IntSet
class of which methods are annotated with intended functions.
The first annotation states that the constructor initializes the
field elems to an empty array. The intended function for
the size method states that the method returns the length
of the array elems; the pseudo variable result denotes
the return value of a method. The annotation for the has
method is interesting, as it is defined in terms of a user-defined
function, 1sIn. As shown, a user-defined function may be
introduced using a where clause. The overloaded function
isInis defined recursively using a syntax similar to Dijkstra’s
guarded command. The expression isIn(e,a, i) is false
if i is greater than or equal to a.length; otherwise, it is

e == a[i] or isIn(e, a, i+1). The annotation for the




insert method is also interesting. It states that if the element
is already contained in the set (i.e., has (e) ), then the method
has no effect as indicated by an identity function, I; otherwise,
the new value of elems is any permutation of the old value of
elems appended with the element e. The expression (any z;
B(x)) introduces a loose specification by denoting an arbitrary
value x that satisfies the Boolean expression B(z). The notion
of permutation is defined by introducing a specification-only
method isPerm that tests whether an array is a permutation of
another; the definition appears inside an annotation, indicating
that it can be used only in annotations but not in program
code. This kind of specification-only methods is another way
to introduce a user-defined vocabulary for writing intended
functions.

IV. VERIFYING J,
A. Proof Rules

In the functional program verification, verifying a program
is essentially comparing two mathematical functions. The
core idea is to calculate the function computed by code and
compare it with the intended function of the code. Figure 4
shows proof rules for representative J) language constructs.

The first rule says when a function is a correct with respect
to (C) another function. This rule is needed because code often
does more than what its intended function states. A function f;
is correct with respect to f5 if the domain of f; is a superset
of the domain of f> and, for every x in the domain of f5,
both f; and fo map x to the same value. We also say fi is a
refinement of fs.

The next two rules are for an assignment statement and a se-
quential composition statement. For the assignment statement,
we assume that the expression on the right hand side is side-
effect free. In rule R3, f1; f> denotes a functional composition
of two functions, fi; and fo, often written as fs o fy; that is,
(s f2) (@) = fo(fo(@)).

Rule R4 is a proof rule for an if statement and is based on a
case analysis. It requires one to prove the correctness on both
cases when the if condition hold and when it doesn’t.

The last rule, a proof rule for a while statement, uses an
induction. To prove the correctness of a while statement with
respect to an intended function f, one has to prove that:

1) when the loop condition (E) doesn’t hold, an identity

function (I) is correct with respect to f, and

2) when the loop condition holds, the loop body (S)

followed by f is correct with respect to f.

Though not shown in the rule, one also need to prove the
termination of the loop (see below for an example). In the
following section we will show how we can apply these rules
to prove the correctness of Jy code.

B. Verifying Procedural Code

In this section we demonstrate a verification of procedural
code of Jy that doesn’t involve objects or message sending.
The following code computes the sum of all even numbers
between 1 and n, inclusive. As shown, it is annotated with
intended functions written in terms of user-defined functions

_dom(f1) 2 dom(f2), fi(z) = f2(x) for each x € dom(f2)
' L fa
R2:z=ELC [z := E|
DSBS, SE s i 2ES
' S1; 52 C f
R4 E=S8Cf " E=SCFf
' if(E) SielseS: C f

s, EZIC E=SifCS
' while (E) S C f

R1

R3

Fig. 4. Proof rules for representative J constructs

such as isEven and sumEven, and intended functions are
labelled with names such as fy and fi.

@ isEven(x) = x % 2 == 0;
@ sumEven(x,y) = x >y ? 0:
@ sumEven (x+1,y) + (isEven(x) ? x : 0);
@fo: [r := sumEven(l, n)
@fi: [r, 1 =0, 1]
int 1 = 1;
r = 0;
@f2: [r, i := r + sumEven(i, n), anything]

while (i <= n) {

@fs: [isEven(i) -> r, 1 :=r + i, 1 + 1
| else —> i := 1 + 1]
if (1% 2 == 0)
r=r + i;
i=1i+1;

}

The verification of the above code involves discharging the
following four proof obligations.
1) fi; f2 C fo, i.e., proof that f; followed by fs is a correct
implementation of f;.
2) Correctness of f1 and its code
3) Correctness of f; and its code, which involves the
following three sub-proofs.
a) Termination of the loop
b) Basis step: =(i <n) =1 C fy
c) Induction step: i <n = f3; fo T fo
4) Correctness of f3 and its code

Below we show the proofs of these obligations. We first
prove fi; f2 C fo.

f1; /2 [ryi:=0,1];[r,i:=1r+ Xc(i,n), L]
= [ri:=04+%.(1,n), 1]
= [ri:=2%c(i,n), L]
T [r=2Xc(i,n)]
= Jo

where . (z,y) denotes the sum of all even numbers from z
to y, inclusive, and L denotes an arbitrary value.
The proof of the second obligation, f; and its code, is trivial.



We next prove f, i.e., the correctness of the while statement
in terms of its intended function (f3) and that of the loop
body (f3); the proof of the loop body is done separately (see
below). First, we prove the termination of the loop by finding
a loop variant, n — . We note that, as stated in f3, the value
of ¢ increases by 1 upon each iteration of the loop. Thus,
the loop variant decreases by 1 on each iteration, eventually
terminating the loop when it becomes negative. We next prove
the correctness of the loop inductively. We first prove the basis
step: —(i < n) = I C fo. When ¢ is greater than n, we have
the following.

fo = [ri=r+X.(i,n), 1]
= [ri:=r+0,1]
= [ri:=r 1]
J [T,Z :Tai]:‘[

We next prove the induction step: ¢ < n = f3; fo T fo.
When ¢ is less than or equal to n, we have the following.

fa;fa = [isEven(i) - rji:=r+4,i+1
|else — i :=i+1];[ri:=7r+X.(i,n), L]
[r,i:=r+ (isEven(i) ?¢: 0) + X (i + 1,n), L]
= [ri=r+X.(i,n), L]
f2
This concludes the proof of f5 and its code.
The last obligation is to prove the refinement of f3, i.e., the

correctness of the loop body. The proof is straightforward, as
shown below.

f3 [isEven(i) — r,i:=7r+4,i+ 1| else — i:=14+ 1];
= JisBven(i) —r:=r+i|else = I[];[i : =i+ 1]
J ifG%2=0r=r+1i

i=i+1;
C. Verifying Methods and Method Invocations

For a modular verification, it is essential to verify the
correctness of a method just once. To achieve this, we use the
specification of the method for the verification of a method
invocation. For this, we first have to verify that a method
body is correct with respect to the intended function of the
method. However, there is nothing new about this verification
except that, for the verification purpose, we can view a return
statement as an assignment to a pseudo variable, result, as
follows; recall that we use result to denote the return value
of a method in the method specification.

@[ result :=x + y ]
return x + y;

The next step is to verify a method invocation. As mentioned
earlier, we use the specification—intended function—of the
invoked method with a proper renaming (see Section IV-D for

determining the invoked method in the presence of dynamic
method dispatch). This approach is modular in that a method
implementation needs to be verified just once and for all.
Any change in the implementation doesn’t invalidate the
verification of client code as long as the method specification
remains the same. The following two axioms are for verifying
a method invocation in two different contexts.

R6A: E().TTL(El,. . 7E‘n) C fm(E1/$1, .. .,En/l’n,Eo/th’iS)
R6B: T = Eo.m(El,...,En)
" C fm(E1/x1,. .., En/Tn, Eo/this, z/result)

where f,, is the intended function of m, x1, ..., x, are formal
parameters of m, and z/y denotes the renaming of every free
occurrence of y with x. Note that pseudo variables such as
this and result in the intended function are appropriately
renamed. Refer to Section IV-D3 for an example verification
of a method invocation in object-oriented code.

D. Verifying Object-Oriented Code

1) Problem: How to verify object-oriented code in the
presence of subclassing? The verification of a single class in
isolation doesn’t introduce a new problem. However, a new
subclass may change the behavior of existing code because of
method overriding and dynamic dispatch, and thus may require
re-verification of existing code.

As an example, consider introducing a new subclass of the
IntSet class, say SortedIntSet, that stores the elements
sorted. The new subclass overrides the insert method to
store all the elements sorted. It may also introduce additional
methods, such as first that returns the first element of
the set, to observe the order of the elements. Now, let’s
assume that the correctness of IntSet has already been
verified. When a new class SortedIntSet is introduced
as a subclass of IntSet, do we need to verify only the
additional methods introduced in SortedIntSet such as
the overriding insert method or do we also need to reverify
all the methods inherited from IntSet such as the has
method. It is well known that we have to reverify or re-test
all the method of IntSet because of method overriding and
dynamic dispatch. For example, if the IntSet class has a
method named insertAll that adds multiple elements and
is written in terms of the insert method, we have to rever-
ify the inherited insertAll method because its behavior
may have been changed; it uses the insert method which
is overridden in SortedIntSet and because of dynamic
dispatch the overriding method will be invoked in the context
of SortedIntSet. The same is true for client code that uses
IntSet. In short, we have to reverify any code that uses the
overridden method directly or indirectly.

2) Approach: We use a behavioral notion of subtyping to
support a modular verification of object-oriented code in the
presence of subclassing and dynamic dispatch. An object of
a subclass must behave like an object of its superclass [8].
As before, we verify client code using the specification of



an invoked method, where the invoked method is determined
statically based on the declared, or static, types. However, one
difference is that whenever a new subclass is introduced, it
has to be proved to be a behavioral subtype of its superclass.
In particular, every overriding method has to be proved to
behave like its overridden method. If this is done, the existing
verification of the class or its client code is still valid because
the verification was done by using the specification of the
overridden method and the overriding method preserves the
specification by behaving like the overridden method; the
overriding method is correct with respect to the specification
of the overridden method. The approach is modular in that we
only need to verify new code introduced in the subclass; we
don’t have to reverify any existing code.

Below we formulate the notion of behavioral subtyping in
terms of intended functions. Let S be a subclass of 7. We say
S is a behavioral subtype of T if for every method m that is
overridden in S, the following two conditions are satisfied.

o dom(f3) D dom(fL), where f5 and fI are intended

functions of m in S and T, respectively

o f2(x) = fL(z) for each z € dom(f1)

The first condition states that an overriding method accepts
all the values accepted by its overridden method, and the
second condition states that the overriding method produces
the same value as that of the overridden method. In the
following subsection, we show a sample verification of a
behavioral subtyping relationship.

3) Example: As explained earlier, a verification of object-
oriented code generally consists of two steps. The first step is
to verify the code itself. If the code is a client of some class,
the code is verified using the specification of the class that is
determined statically based on type declarations. The second
step is to verify, for each subclass, a behavioral subtyping
relationship between it and its superclass.

As an example, consider the following code that uses the
IntSet class introduced in earlier sections.

@fo: [s.has(l) —> result := s.size()
Q | else —> result, s.elems := s.size() + 1,
@ (any a; s.isPerm(a, s.append(s.elems, 1)))]
int addOneAndReturnSize (IntSet s) {
@f1: [s.has(l) —> I
@ | else —> s.elems :=
@ (any a; s.isPerm(a, s.append(s.elems, 1)))]
s.insert (1);
@fz: [result := s.size()]

return s.size();
}

The verification of this client code is straightforward. We
need to prove fi1;fo C fo and the correctness of f; and fs.
Note that for the verification of f; we use the specification of
the IntSet class, the declared type of the formal parameter
s. We use the Rule R6A (see Section IV-C) and replace the
method call, s.insert (1), with its specification after an
appropriate renaming for formal parameters and the implicit
this, ie., 1 for e and s for this.

Let us now introduce the SortedIntSet class as a
subclass of the IntSet class. Figure 5 shows the defi-
nition of SortedIntSet along with its specification. In

class SortedIntSet extends IntSet ({
@[elems := new int[0]]
SortedIntSet () {
super () ;

}

@[has(e) —> I

@ | else —> elems :=

void insert (int e)
if (!'has(e)) {

(any a; sortlInserted(a, elems, e))]

int[] newElems = new int[elems.length + 1];
int i = 0;
int j = 0;

boolean inserted = false;
while (j <= elems.length) {
if (!inserted && e < elems[3j]) {
newElems[i] = e;
inserted = true;
} else {
newElems [1i]
j=3+ 1

= elems[]j];

}
i=1i+ 1;

}

if (!inserted)
newElems[i] = e;

}

elems = newElems;

}
}

boolean sortInserted(int[]
int[] sb = append(b, e);

@ a, int[]
@

@ Arrays.sort (sb);

@

@

b, int e) {

return Arrays.equals(a, sb);

}

Fig. 5. Class SortedIntSet

addition to proving the correctness of SortedIntSet, we
also need to prove a behavioral subtyping relationship be-
tween SortedIntSet and IntSet. If this is done, the
verification of the client code of IntSet, such as the
addOneAndReturnSize method, will be still valid when
an object of SortedIntSet is substituted for an object of
IntSet, e.g., for the formal parameter s. For the verification
of subtyping, we need to consider only the insert method
that is overridden. The specifications of this method in both
classes are shown below.

fi: IntsSet
[has(e) -> I

| else —> elems := (any a; isPerm(a, append(elems,e)))]

fa: SortedIntSet
[has(e) -> I

| else —> elems := (any a; sortInserted(a, elems, e))]

Both functions are total', and f, maps the elems field to
an array that f; maps to; a sorted array is a permutation of the
original array. Thus, SortedIntSet is a behavioral subtype
of IntSet.

V. ABSTRACTION AND MODULAR REASONING

In Section IV-D3, when we reasoned about the correctness
of client code of a class, we used the representation, or con-
crete, value of the class. For example, the intended functions

ITechnically, f1 and fo are not functions but relations because the any
expression introduces a loose specification. For relations f1 and f2, we need
to show fo(x) C fi(z) for each z € dom(f1) to prove fa C f1.




of the addOneAndReturnSize method and the insert
method call statement were written in terms of the elems
field of the IntSet class. Such an implementation-dependent
specification is often hard to read, understand and reason about
because one has to know particular implementation details—
e.g., the use of an array to store the elements of a set—
and manipulate low-level concrete, representation values—
e.g., an array. Worse, such a specification and reasoning is
not modular in that if the representation of the class changes
the specification and reasoning of its client code should be
re-done in terms of the new representation.

One possible solution would be to have multiple specifica-
tions of different abstraction levels, e.g., a public specification
for clients and a private specification for the implementation.
The public specification is written in terms of abstract values,
whereas a private specification is written in terms of concrete
representation values. For example, the following listing shows
a public specification of the IntSet class, written in terms
of a mathematical set.

class IntSet {
@ with map(elems, 0) where

Q map(a, i) = i1 >= a.length ? O : af[i] U map (a, i+1)

int[] elems;

@[this := 0]
IntSet () { /» ... x/ }

@[result := |this|]
int size() { /* ... x/ }

@[result := e € this]
boolean has(int e) { /» ... */ }

@[e € this -> I | else -> this := this U {e}]
void insert(int e) { /* ... */ }

An IntSet object is now viewed abstractly as a mathe-
matical set, and the intended functions for the IntSet class
are written using the vocabulary of sets such as ), €, and U.
The first annotation, the with clause, defines an abstraction
function that maps a concrete representation value (i.e., an
array) to an abstract specification value (i.e., a set). It allows to
reason about the correctness of a (public) specification written
in terms of abstract values. Note that the annotation for a
method body can still be written in terms of representation
values, e.g., by referring the elems field. A mathematical
model such as a set can be provided as a built-in mathematical
library or introduced as a user-defined library as needed.

The listing below shows the annotation of the
addOneAndReturnSize method rewritten by referring to
the public specification of the IntSet class.

Q[1 € s —> result := |s]|
@ | else -> result, s := |s| + 1, s U
int addOneAndReturnSize (IntSet s) {
@[1 € s —> I | else —> s := s U {e}]
s.insert (1);

{e}]

@[result := |s]|]
return s.size();

}

As the annotation now doesn’t depend on a particular
implementation detail or decision of the IntSet class, e.g.,
the use of an array, it doesn’t have to be re-specified or
re-verified when the implementation of the IntSet class
changes as long as its interface and specified behavior remain
the same.

When the abstract values of a subclass is different from
those of its superclass, we also need to define a function,
similar to an abstraction function, to map the values of a sub-
class to those of its superclass. This function, called a coercion
function, coerces a value of a subclass to its superclass and
allows one to reason about a behavioral subtyping relationship
between a subclass and its superclass; the intended functions
of an overridden method and an overriding methods may be
written using different abstract values. The annotation below
shows a coercion function for the SortedIntSet to map a
sequence, an abstraction of the SortedIntSet, to a set.

class SortedIntSet extends IntSet
@ with map (this) where
@ map(s) = |s| ==12 0 :
{ ...}

first(s) U rest (s)

VI. RELATED WORK

The importance of mathematics to the computer program
development has long been recognized since Hoare’s seminal
work on an axiomatic approach to defining the meanings of
programs and proving their correctness [5], and there have
been numerous publications on this subject. Below we mention
some of the most related work.

For formal specifications of programs, we took the ideas
from Cleanroom [6] [9] [7]—e.g., functional semantics and
intended functions—and enhanced them with recent advances
in formal behavioral interface specification languages (BISL),
especially design-by-contract (DBC) notations [10] and such
BISLs as JML [11]. As in Cleanroom, intended functions
are expressed in concurrent assignment statements. However,
following the idea of DBC, Java’s expression syntax is used to
write intended functions. This makes it easy for programmers
to learn and write intended functions, as it eliminates or
minimizes the overhead of learning a separate specification
notation. Some formal specification languages provide an ex-
tension mechanism to introduce a user-defined vocabulary for
writing specifications. In JML, for example, one can introduce
specification-only methods, called model methods, for writing
specifications [12]. In J, one can introduce model methods
as well as user-defined mathematical functions to enrich the
vocabulary for writing intended functions.

JML inspired the design of J) on supporting abstract
specifications and modular reasoning. There are dual uses of a
method specification—for verifications of client code and the
method implementation. In JML, these are supported by model
variables and privacy of specifications. A model variable is
a specification-only variable to describe the abstract state of
some program variables [12]. An abstract method specification
can be written by referring to and manipulating the abstract



values of model variables. This abstract specification is used
to verify the client code. However, when reasoning about the
correctness of a method implementation, one has to know how
the abstract state is represented. For this, a model variable may
be accompanied by the specification of an abstraction function,
that says how to map concrete program states to the abstract
values of model variables [13] [14]. For modular reasoning of
client code, JML also supports privacy of specifications [11]. A
public specification, for example, can’t be written by referring
to private information such as implementation decisions and
details that are irrelevant to reasoning about client code.

We found no published work on extending Cleanroom-style
functional specification and verification for object-oriented
programs, except for Ferrer’s [15]. Ferrer proposed to specify
the behavior of a class in object-oriented programs by writing
the intended functions of mutation methods in terms of the
observer methods of the class [15]. However, such a specifica-
tion has an algebraic flavor and will be inherently incomplete,
as the intended function of the observer methods themselves
can’t be written. In J, a complete specification can be written
by referring to and manipulating abstract values, and it has a
flavor of model-oriented specifications.

The notion of behavioral subtyping is a key to a modular
reasoning and verification of object-oriented programs [8]. We
adapted the work of Leavens [16] on verification logic for
object-oriented programs that relies on a behavioral notion of
subtyping. In essence, the verification of client code is the
same as in procedural programs. For each subclass, however,
one has to prove that it is a behavioral subtype of its superclass
by showing that each overriding method behaves like the over-
ridden method. This approach reflects the way programmers
reason informally about object-oriented programs, in that it
allows them to use static type information, which avoids the
need to consider all possible runtime subtypes. Our specific
adaptation is to define a behavioral notion of subtyping in
terms of intended functions for use in the functional verifica-
tion.

VII. CONCLUSION

As a verification and validation method for software sys-
tems, formal reasoning—reasoning based on mathematics—
is an aid to success in preparing students to develop correct
and reliable software systems. As the first step for integrat-
ing a formal program verification to the standard computer
science curriculum, from introductory programming courses
to advanced programming and software engineering courses,
we formalized a functional program verification technique by
defining a specification notation and proof rules. We also
extended the technique to support a modular verification of
object-oriented programs. In essence, our technique reflects
the way programmers reason informally about object-oriented
programs by requiring to verify that each subclass behaves
like its superclass.

Our work provides a solid mathematical foundation for the
functional program specification and verification. We strongly
believe that our technique can be effectively integrated into

the standard computer science curriculum because, unlike
Hoare logic, it supports forward reasoning and requires a
minimal mathematical background by viewing a program as a
mathematical function from one program state to another and
by using equational reasoning based on sets and functions.
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