, CleanJava: . :
A Formal Notation for Functional Program Verification

Yoonsik Cheon, Cesar Yeep and Melisa Vela

TR #10-49
November 2010; revised January 2011

Keywords: formal specification; formal verification; functional program verification; intended function;
CleanJava.

1998 CR Categories: D.2.4 [Software Engineering] Software/Program Verification — Correctness proofs,
formal methods; D.3.3 [Programming Languages] Language Constructs and Features — Classes and
objects, control structures, inheritance; F.3.1 [Logics and Meanings of Programs] Specifying and Verifying
and Reasoning about Programs — Assertions, logics of programs, specification techniques.

To appear in the 8th International Conference on Information Technology (ITNG 2011), April April 11-13,
2011, Las Vegas, Nevada.

Department of Computer Science
The University of Texas at El Paso
500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.



CleanJava: A Formal Notation for Functional
Program Verification

Yoonsik Cheon, Cesar Yeep, and Melisa Vela
Department of Computer Science
The University of Texas at El Paso
El Paso, Texas, U.S.A.
ycheon@utep.edu, {ceyeep,smvelaloya}@miners.utep.edu

Abstract—Unlike Hoare-style program verification, functional
program verification supports forward reasoning by viewing a
program as a mathematical function from one program state to
another and proving its correctness by essentially comparing two
mathematical functions, the function computed by the program
and its specification. Since it requires a minimal mathematical
background and reflects the way programmers reason about
the correctness of a program informally, it can be taught
and practiced effectively. However, there is no formal notation
supporting the functional program verification. In this paper,
we propose a formal notation for writing functional program
specifications for Java programs. The notation, called CleanJava,
is based on the Java expression syntax and is extended with a
mathematical toolkit consisting of sets and sequences. The vo-
cabulary of CleanJava can also be enriched by introducing user-
specified definitions such as user-defined mathematical functions
and specification-only methods. We believe that CleanJava is a
good notation for writing functional specifications and expect it
to promote the use of functional program verifications by being
able to specify a wide range of Java programs.

Keywords—formal specification; formal verification; func-
tional program verification; intended function; CleanJava

I. INTRODUCTION

In the late 70s, Harlan Mills and his colleagues at IBM
developed an approach to software development called Clean-
room Software Engineering [1] [2]. Its name was taken from
the electronics industry, where a physical clean room exists to
prevent introduction of defects during hardware fabrication,
and the method reflects the same emphasis on defect preven-
tion rather than defect removal. Special methods are used at
each stage of the software development—from requirement
specification and design to implementation—to avoid errors.
In particular, it uses specification and verification, where
verification means proving mathematically that a program
agrees with its specification.

Cleanroom is a lightweight, or semi-formal, method and
tries to verify the correctness of a program using a technique
that we call functional program verification [3] [4]. The tech-
nique requires a minimal mathematical background by viewing
a program as a mathematical function from one program state
to another and by using equational reasoning based on sets
and functions. In essence, the functional verification involves
(a) calculating the function computed by code called a code
function and (b) comparing it with the intention of the code
written as a function called an intended function [4]. For this,

the behavior of each section of code is documented, as well as
the behavior of the whole program. The documented behavior
is the specification to which the correctness of a program is
verified.

We believe that the functional program verification tech-
nique can be effectively taught and practiced, as it requires
a minimal mathematical background and reflects the way
programmers reason about the correctness of a program
informally by supporting forward reasoning. It is also our
conjecture that if programmers become proficient in the func-
tional program verification, they may be able to learn easily
other verification techniques such as such as Hoare logic as
complementary reasoning techniques.

However, there is no formal notation or language to sup-
port the functional program verification. This not only limits
the adoption of functional verification both in academia and
industry but also makes it difficult to develop a standard set
of support tools, thus limiting its user base.

In this paper we propose a formal annotation language
for the Java programming language to support Cleanroom-
style functional program verification. Our language, called
CleanJava, is based on the Java expression syntax extended
with a mathematical toolkit including sets and sequences.
Some notable features of CleanJava include: (a) extensible
vocabularies through user-defined functions and specification-
only methods, (b) a wide-spectrum of formality that can
be tuned, (c) support for abstraction and modularity, and
(d) support for object-oriented concepts such as specification
inheritance. We believe that CleanJava is a good notation for
writing intended functions and facilitates formal correctness
verification and reasoning of Java programs.

The rest of this paper is organized as follows. Section II
provides an overview of the functional program verification.
Section III describes the core part of the CleanJava language,
including its syntax for writing intended functions. Section IV
explains mechanisms for introducing user-defined vocabularies
for writing intended functions. Section V explains an approach
for writing abstract specifications to support modular specifi-
cation and verification. Section-VI describes the inheritance
of specifications. Section VII discusses related work, and
Section VIII concludes this paper.



II. FUNCTIONAL PROGRAM VERIFICATION
A. Programs As Functions

An execution of a program produces a side-effect on a
program state by changing the values of some state variables
such as program variables. In functional program verification,
a program execution is modeled as a mathematical function
from one program state to another, where a program state is a
mapping from state variables to their values. For example,
consider the following code that swaps the values of two
variables x and y.

X = X + y;

y = x -y

X =X -Y;

Its execution can be modeled as a mathematical function
that, given a program state, produces a new state in which x
and y are mapped to the initial values of y and x, respectively.
The rest of the state variables, if any, are mapped to their initial
values; their values remain the same.

A succinct notation, called a concurrent assignment, is used
to express these functions by only stating changes in an input
state. A concurrent assignment is written as [z1, 2, ..., Ty =
e1,€ea,...,e,] and states that each x;’s new value is e,
evaluated concurrently in the initial state, i.e., the input state
or the state just before executing the code. The value of a
state variable that doesn’t appear in the left-hand side of a
concurrent assignment remains the same. For example, the
function that swaps two variables, x and y, is written as
[,y := y, x]. The concurrent assignment notation can be used
to express both the actual function computed by a section of
code, called a code function, and our intention for the code,
called an intended function.

B. Correctness Verification

The correctness of code can be verified by comparing its
code function to its intended function. A program, or a section
of code, with an intended function f is correct if it has a code
function p such that:

o The domain of p is a superset of the domain of f, i.e.,

dom(p) D dom(f).

o For every z in the domain of f, p maps x to the same

value that f maps to, i.e., p(x) = f(z) for z € dom(f).

We also say that p is a refinement of f, denoted by p C f.

For correctness verification of code, we write an intended
function for each section of the code. For example, the
following code finds the largest element of a non-empty array
a and is annotated with intended functions.

//fo:lr := largest value in a]
//fi:lr, i := a[0], 1]
r = al0];
int i = 1;
//f2:[r, 1 := max of r and largest value in a[i..], ?]
while (i < a.length) {
//fs:lr, i := max of r and a[i], i+1]
if (afi] > r) {
r = ali];

}

i++;

An indentation is used to indicate the region of code that an
intended function annotates. In function f;, a question mark
symbol (?) is used to indicate that we don’t care about the
final value of a loop variable 1.

The verification of the above code requires to discharge the
following four proof obligations.

) fi1;f2 © fo, ie., proof that f; followed by f; is a

refinement of fj.

2) Refinement of f1, i.e., correctness of f;’s code.

3) Refinement of f5, which requires the following three

sub-proofs.
a) Termination of the loop
b) Basis step: —(i < a.length) = I C fo, where I
denotes an identity function.
¢) Induction step: ¢ < a.length = f3; fo T f

4) Refinement of f3

As example verification, below we show a proof of the first
obligation, f1; fo C fo.

fiifo = [ryi:=al0],1];
[r,7 := max of r and largest value in a[i..], ?]
= [r,i:= max of a[0] and largest value in a[1..], 7]
= [r,i:= largest value in a, ?]
[

Im1

r := largest value in a]

Il
>

In functional verification, the proof is sometimes straightfor-
ward because we can calculate functions and compare them.
However, we often need to use different techniques such as a
case analysis and an induction based on the structure of the
code as in the proof of fs above.

In the example above, we used informal English texts to
describe and manipulate intended functions. In the following
sections, we show how to formalize them in CleanJava.

III. THE CORE LANGUAGE OF CLEANJAVA

CleanJava is a formal notation for annotating Java code with
intended functions. It supports rigorous or formal verification
of Java code. In this section, we describe the core part of the
CleanJava language.

In CleanJava, an intended function is written using an
extended form of Java expressions. However, CleanJava ex-
pressions have a restriction in that they cannot have side
effects. Thus, Java’s assignment expressions (=, +=, etc.) and
increment (++) and decrement (—) operators are not allowed in
CleanJava expressions, and only query methods are allowed.
A query method is a method that doesn’t have a side effect;
it is used to ask about the state of an object without changing
it. Below is the sample code of the previous section annotated
in CleanJava.

//@ [r := a->iterate(int x, int m = a[0] | x >m 2?2 x : m)]
//@ fi:[r, i := al[0], 1]



/*x@ fa:[r, i := Math.max(r, (* largest in a[i..] x)),
anything] @x/
while (i < a.length) {
//Q@ [r, i := Math.max(r, al[i]), i+1]
if (af[i] > r) {
r = alil;

}

i++;

As shown, a CleanJava annotation is written in a special
kind of comments enclosed in //@ or /*Q@ @%/. An
indentation is used to denote the section of code that an
intended function annotates. The first annotation, for example,
describes the behavior of the whole code, and the second
describes that of the initialization code. An intended function
can have an optional name such as f; and fs.

The first annotation shows an example of CleanJava exten-
sions to the Java expression syntax. The iterate operation is
one of several CleanJava-specific operations defined on arrays
and collections. It has a general form of iterate(l} =,
Ty y| E(x)), where T3 is the element type of an array or
collection and E(z) is an expression of Ty written in terms of
z. The variable x is an iterator that bounds to each value of
the array or collection, and y is an accumulator that contains
the value of E(z) after each evaluation of it. The operation
evaluates E(x) for each element in the array or collection,
bound to z, storing the result of each evaluation to y, and
returns the final value stored in y. The above iterate
operation returns the largest value contained in the array
a. Note that an arrow notation (—>) is used to indicate an
invocation of an iteration operation. Other iteration operations
defined on arrays and collections include select, reject,
collect, forAll, and exists.

The annotation defining f> shows several features of Clean-
Java. First, a Java method such as Math.max can be used in
CleanJava expressions as long as it has no side effect. Second,
the keyword anything indicates that one doesn’t care about
the final value of a variable—a local or incidental variable.
It is one way to write a loose specification since an arbitrary
value can be assigned to such a variable by an implementation.
Lastly, when writing an intended function, one can escape
from formality by using an informal description. An informal
description of the form (* some text *) is convenient when
the formal statement is not easier to write down or clearer. It
allows informal texts to be combined with formal statements
and is convenient for organizing an informal documentation.
Informal specifications can also be very useful when there’s
not enough time to develop a formal description of some
aspect of the code. This kind of escape from formality is very
useful, in general, to avoid describing the entire world formally
when writing a specification of some code. However, there
are several drawbacks to using informal descriptions. A major
drawback is that informal descriptions are often ambiguous
or incomplete. Another problem is that informal descriptions
cannot be manipulated by tools.

IV. EXTENSION MECHANISMS

One feature of CleanJava is that its vocabulary is not limited
to a predefined set of symbols and expressions but can be
extended by a programmer. In this section we describe two
such extension mechanisms: user-defined functions and model
methods.

A. User-defined Functions

In CleanJava, a programmer can introduce new mathe-
matical functions for use in writing intended functions. For
example, the following code is from the previous section with
its annotations rewritten using a user-defined function and the
informal description removed.

//@ fun max(a) = a->iterate(int e, int m=0 | e >m 2 e : m)
//@ [r := max(a)]
//@ [r, 1 := a[0], 1]
r = al0];
int i = 1;
/*@ [r, i := Math.max(r, m), anything] where
int m = max (Arrays.copyOfRange(a,i,a.length)) @x/
while (i < a.length) {
//@ [r, 1 := Math.max(r, al[i]), 1i+1]

if (afi] > r) {
r = alil;
:
i++;
}

The first annotation introduces a function named sum
that takes an array or collection of integers and returns a
maximum value contained. The body of the function is just
a Java expression with CleanJava extensions such as collec-
tion operations. As shown, one doesn’t have to specify the
signature—argument and return types—of a function. As in
modern functional languages such as SML and Haskell, they
are inferred statically at compile time. A CleanJava function
follows the Java scoping rules. Thus, the function max can be
used in the specifications of the top-level intended function at
line 2 and that of the while statement. It is also possible to
introduce a function as a member of a class or an interface
(see an example in Section IV-B).

The fourth annotation, the intended function for the while
statement, introduces a constant function named m written in
terms of the user-defined function max. It is a local function
indicated by the keyword where; it is visible only in the
preceding intended function.

B. Model Methods

In addition to user-defined functions, one can also introduce
Java methods specifically for writing intended functions. These
specification-only methods are called model methods. Figure 1
shows an example use of a model method. The class Ad-
dressbook stores entries called contacts; each contact consists
of a few standard fields such as name, address, telephone
number, and e-mail address. It defines several public methods
to manipulate the contained contacts.

The specification of the addContact method is interest-
ing. It is written in terms of the append method of which
definition appears inside an annotation. The fact that the
definition of the append method is an annotation indicates



class AddressBook {
private Contact/[]
private int size;

contacts;

//@ [contacts, size := new Contact[100], 0]
public AddressBook () {

contacts = new Contact[100];

size = 0;

}

/*@ [!hasContact (n) — contacts, size
@ := append (new Contact (n,i)), size+l] @x/
public void addContact (String n, ContactInfo i) { ... }

/*@ public Contact[] append(Contact c) {

@ Contact[] cs = contacts;

@ if (size > contacts.length - 1) {

] cs = new Contact[contacts.length * 2];

@ System.arraycopy (contacts, 0, cs,

@ 0, contacts.length);

@ }

c] cs[size] = c;

@ return cs;

@x/
//@ [result := has(Arrays.copyOf (contacts,size), n)]
public boolean hasContact (String n) { ... }
/*@ public fun has(a,n) =

@ a->exists (Contact c| c.getName().equals(n)); @x/

Fig. 1. An example annotation written using a model method

that it is a model method, meaning that it can be used only in
annotations but not in Java code. The append method returns
an array that contains the contents of the field contacts
with the argument c appended; it may creates a new array
to append the given contact. A model method such as the
append method should not have a side-effect because it will
be used in annotations. Except for this, its use is the same as
that of a Java method. It follows Java’s visibility and scoping
rules. The append method, for example, can be used in the
annotations of the client code of the AddressBook class and
is inherited to subclasses because it is a public method. The
addContact method is partial in that its behavior is defined
only when there exists no contact in the address book with the
given name (n). The optional condition preceding the arrow
symbol (—) specifies the domain of the intended function; if
omitted, the intended function is a total function.

The specification of the hasContact method is also
interesting. It refers to a user-defined function, has, which
is declared to be a member function. Like a model method,
a member function such as the has function also follows
Java’s visibility and scoping rules; it can be used in the client
annotations and is inherited to subclasses.

Both user-defined functions and model methods allow one
to extend the vocabularies of CleanJava. If the result or return
value can be expressed in a single expression, a user-defined
function would be a better choice since it provides a succinct
notation. On the other hand, if it can be better expressed
algorithmically as a sequence of statements, a model method
would be a better choice.

V. SUPPORT FOR ABSTRACTION

CleanJava provides several features to support modular
specification and verification. Verification of client code of
a class is said to be modular if a change on the the hidden
implementation details of the class such as data structures and
algorithms doesn’t require a re-verification of the client code.
For modular verification, the specification and verification of
client code of a class shouldn’t rely on the implementation
details of the class. This in turn means that the specification
of the class itself shouldn’t refer to, or expose, the hidden
implementation details and decisions because it is this spec-
ification that is used in the specification and verification of
the client code. Otherwise, the client code can be tightly
coupled to the class by exploiting an exposed implementation
detail or decision of the class. Its verification or reasoning
will not be modular either because a change on the class
requires a re-specification of the class, which in turn requires
a respecification and re-verification of the client code itself.
In short, a class specification—as a formal API document—
should be abstract and support information hiding in that it
shouldn’t refer to, or expose, hidden implementation details or
decisions.

In CleanJava, one can write an abstract specification for
a class that doesn’t expose implementation details of the
class. This is done by writing a specification that manipulates
abstract values of a class, not its concrete representation
values. For example, in the previous section, an address book
is implemented as an array of contacts, and its specification
is written in terms of this array, thus exposing the hidden rep-
resentation. However, for a specification purpose, an address
book can be can viewed, modeled, and manipulated as a set
of contacts. In CleanJava, this can be achieved by using a
specification-only variable, called a model variable, which is
similar to a model method introduced in the previous section.

Figure 2 shows an abstract specification of the Address-
Book class written using a model variable. The first an-
notation introduces a model variable named cset of type
CJSet<Contact>. A generic class CJSet is a standard
library class of CleanJava and provides an abstraction of
a mathematical set, similar to that of java.util.Set.
However, one key difference from the Set interface is that
it is an immutable type because it is supposed to be used in
CleanJava annotations. There is no method defined that has a
side-effect. The add method, for example, returns a new set
instead of mutating the receiver. Since a model variable such
as cset is used only in annotations, its value is not directly
assigned but is given implicitly as a mapping from program
variables. This mapping is called an abstraction function and
is specified in an optional initializer of a model variable
declaration. For example, the value of a model variable cset
is toSet (contacts, size), where toSet is a user-
defined function.

Once the abstract values of a class are defined using
model variables, they can be used to write specifications for
public methods of the class. For example, the intended func-



class AddressBook {
private Contact/[]
private int size;

contacts;

/*@ public CJSet<Contact> cset = toSet (contacts,size)

@ where
@ fun toSet (a,0) = new CJSet<Contact> ()
@ fun toSet(a,i) = toSet(a,i-1).add(ali]);
@x/
//@ [cset := new CJSet<Contact>()]
public AddressBook () { ... }
/%@ [result := cset->exists|(
@ c: Contact | cgetName().equals(n))] @x/
public boolean hasContact (String n) { ... }

/*@ [!hasContact (n)
@ — cset := cset.add(new Contact(n,i))] @x/

public void addContact (String n, ContactInfo i) { ... }
/*@ [hasContact (n) — cset := cset->select (
Q c: Contact | !c.getName().equals(n))] @x/

public void removeContact (String n) { ... }

/%@ [hasContact (n)
@ c: Contact |
public Contact getContact (String n)

— result := cset->any(
c.getName () .equals(n))] @x/
{ ... )

Fig. 2. Revised specification of the AddressBook class

tions of the constructor and methods such as hasContact,
addContact, and getContact of AddressBook are
written by referring to the model variable cset. One can
also write multiple specifications for the same method, for
example, a public specification written in terms of abstract
values and a private specification written in terms of concrete
representation values (see below).

//Q@ [cset := new CJSet<Contact> ()]
public AddressBook () {
//@ [contacts, size := new Contact[100], 0]
contacts = new Contact[100];
size = 0;

The public specification is for clients and the private speci-
fication for an implementor. The private specification needs to
be proved to be a correct implementation (or refinement) of
the public specification, and this is done using the abstraction
function to coerce a concrete value to an abstract value.

How does the use of a model variable support modular
specification and verification of client code? If the concrete
representation of a class is changed, one only needs to re-
define the abstraction functions of the model variables of the
class. The public specifications of the class remain the same
as they are written in terms of model variables. This means
that if client code is specified and verified using the public
specification of the class, it is still valid and doesn’t require
re-specification or re-verification. Model variables also support
a separation of concerns when developing a program. Once the
public interface and its specification of a class are defined and
formally written, the development of the class and its clients—
code along with its detailed specification and verification—can
be done separately and independently.

class GroupedAddressBook extends AddressBook {
private Map<String, Set<Contact>> groups;

/*@ public CJMap<String,CJSet<Contact>> cmap

@ = CJMap.convertFrom(groups) ;

@x/

/*@ [cset, cmap := new CJSet<Contact>(),

@ new CJMap<String,CJSet<Contact>> ()] @x/
public GroupedAddressBook () { ... }

//@ [result := cmap.containsKey (n)]
public boolean hasGroup (String n) { ... }
/*@ ['hasGroup (n)

@ — cmap := cmap.put(n, new CJSet<Contact>())] @x/
public void createGroup(String n) { ... }
/+@ [hasGroup (n)

@ — result := cmap.get(n).convertToSet ()] @x/
public Set<Contact> getGroup(String n) { ... }
/*@ [hasContact (cn) && hasGroup (gn)

@ — cmap := cmap.put(gn, g.add(c))

@ where Set<Contact> g = cmap.get (gn)

@ Contact ¢ = getContact (cn)] @*/

public void addToGroup (String cn, String gn) { ... }

/+@ also
@ [hasContact (n)
@ — cmap := removeContact (getContact(n))] @x/

public void removeContact (String n) { ... }

/+@ publiec CJMap<String,CJSet<Contact>>

@ removeContact (Contact c) {
@ CJMap<String,CJSet<Contact>> r = cmap;
@ for (String k: r.keySet()) {
] r = r.put (k, r.get(k).remove(c));
@ }
@ return r;
@x/
}
Fig. 3. Specification of the GroupedAddressBook class

VI. INHERITANCE OF SPECIFICATIONS

In CleanJava, a subclass inherits all the properties of its su-
perclass, including annotations such as user-defined functions,
model methods, and method specifications. As an example, let
us introduce a new subclass of the class AddressBook, named
GroupedAddressBook. The class GroupedAddressBook allows
one to organize contacts into a set of named groups. A contact
can now belong to several named groups. Figure 3 shows the
interface specification of the GroupedAddressBook class.

As shown, contact groups are represented as a map, named
groups, from group names to sets of contracts belonging
to the named groups. This representation is hidden, but its
abstraction, a model field named cmap, is visible to the client
and is used in specifying the behaviors of public methods.
A generic class CdMap is a standard model class providing
an abstraction of a map. As a model class, it is an immutable
type. The class has a static method named convertFrom that
coerces a java.util.Map object to an CIJMap instance,
and this method is used in specifying the abstraction function
for the model field cmap.

The specification of the constructor states that initially there
is no contact and no group. This is done by specifying the




value of the model fields cset and cmap. Note that the model
field cset is inherited from the superclass and is visible in
the GroupedAddressBook class.

In addition to the inherited methods, the GroupedAddress-
Book class introduces several additional methods such as
createGroup, getGroup, and addToGroup to manip-
ulate contact groups. As expected, the behaviors of these
methods are specified abstractly in terms of the model field
cmap.

Perhaps, the most interesting part of the GroupedAddress-
Book class is its specification of the overriding method
removeContact. The removeContact method is over-
ridden because if a contact is removed from an address book,
all its occurrence from contact groups also have to be removed.
The fact that a contact is removed from an address book is
specified in the annotation of the overridden method in the
superclass. However, this is inherited to the overriding method
in the subclass and thus doesn’t have to be re-specified in
the subclass. The keyword also provides a visual cue that a
specification is being inherited from a superclass. In short,
the annotation for the overriding method removeContact
in the subclass only specifies the fact that all occurrences
of the contact removed from the address book should also
be removed from contact groups, but due to specification
inheritance its complete and effective specification is:

[hasContact (n) — cset, cmap :=
cset->select (Contact c| !c.getName().equals(n)),
removeContact (getContact (n)) ]

VII. RELATED WORK

The preliminary design of CleanJava was influenced by
several formal specification languages. Below we summarized
some of the most influencing and closely related work.

Although the foundation of our work is Cleanroom [1]
[2] [5], we also took ideas from recent advances in formal
specification languages such as design-by-contract (DBC) no-
tations [6] and behavioral interface specification languages
(BISL) [7]. As in Cleanroom, intended functions are written
in concurrent assignment statements, however, following the
idea of DBC, Java’s expression syntax is used to write intended
functions. This makes it easy for Java programmers to learn
and write intended functions since it minimizes the overhead
of learning a separate specification notation. Extensions to
the Java expression syntax, such as iteration operations on
arrays and collections, were inspired by the Object Constraint
Language (OCL) [8]. The design of built-in mathematical
toolkit including sets and sequences was based on that of Z,
VDM-SL, and JML [7]. The syntax and semantics of user-
defined mathematical functions were influenced by modern
functional programming languages such as SML and Haskell
and their integrations with object-oriented programming lan-
guages, e.g., Scala [9]. The JML language, a BISL for Java,
had a great influence on the design of CleanJava [7]. The
notion of a model method and the idea of combining formal
and informal texts in the specification of an intended function
are from JML. JML also inspired the design of CleanJava

on supporting abstract and modular specifications, especially
the notions of model variables [10]. Model variables and
privacy of specifications support the dual uses of a method
specification—yverifications of both client code and the method
implementation itself.

The only published work that we found on extending
Cleanroom-style functional specifications for object-oriented
programs is that of Ferrer [11]. Ferrer proposed to specify the
behavior of a class in object-oriented programs by writing the
intended functions of mutation methods in terms of the ob-
server methods of the class. However, such a specification has
an algebraic flavor and will be inherently incomplete because
the intended function of the observer methods themselves
can’t be written. In CleanJava, a complete specification can
be written by referring to and manipulating abstract values
represented by model variables, and it has a flavor of model-
oriented specifications.

VIII. CONCLUSION

We described the key features of CleanJava, a formal anno-
tation language for the Java programming language, to support
functional program verification. In CleanJava, annotations
such as intended functions are written in the Java expression
syntax extended with features from recent advances of formal
specification languages, such as informal descriptions, itera-
tion operations, user-defined mathematical functions, model
methods, model variables, and specification inheritance. The
CleanJava language is currently being evaluated and refined
through case studies, and its support tools are being developed.

ACKNOWLEDGMENT
This work was supported by NSF grant DUE-0837567.

REFERENCES

[1] H. D. Mills, M. Dyer, and R. Linger, “Cleanroom software engineering,”
IEEE Software, vol. 4, no. 5, pp. 19-25, Sep. 1987.

[2] S.J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore, Cleanroom
Software Engineering. Addison Wesley, Feb. 1999.

[3] Y. Cheon, “Functional specification and verification of object-oriented
programs,” Department of Computer Science, The University of Texas
at El Paso, 500 West University Ave., El Paso, TX, 79968, Tech. Rep.
10-23, Aug. 2010, to apper in the Annual International Conference on
Software Engineering (SE 2010), December 6-7, 2010, Phuket, Thailand.

[4] A. M. Stavely, Toward Zero Defect Programming. Addison-Wesley,
1999.

[5] R. Oshana, “Tailoring Cleanroom for industrial use,” IEEE Software,
vol. 15, no. 6, pp. 46-55, Nov. 1998.

[6] B. Meyer, “Applying “design by contract
pp. 40-51, Oct. 1992.

[71 G.T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of JML:
A behavioral interface specification language for Java,” ACM SIGSOFT
Software Engineering Notes, vol. 31, no. 3, pp. 1-38, Mar. 2006.

[8] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA, 2nd ed. Addison-Wesley, 2003.

[9] M. Odersky, L. Spoon, and B. Venners, Programming in Scala. Artima,
2008.

[10] Y. Cheon, G. T. Leavens, M. Sitaraman, and S. Edwards, “Model vari-
ables: Cleanly supporting abstraction in design by contract,” Software—
Practice & Experience, vol. 35, no. 6, pp. 583-599, May 2005.

[11] G. J. Ferrer, “Teaching Cleanroom software engineering with object-
oriented data abstraction,” Journal of Computer Sciences in Colleges,
vol. 21, no. 5, pp. 155-161, 2006.

[T
B

Computer, vol. 25, no. 10,



