PWiseGen: Generating Test Cases for Pairwise Testing
Using Genetic Algorithms

Pedro Flores and Yoonsik Cheon

TR #11-06
January 2011

Keywords: combinatorial testing, genetic algorithms, pairwiseitggtsoftware testing, test coverage.

1998 CR Categories:D.2.5 [Software EngineeririgTesting and Debugging — testing tools (e.g., data
generators, coverage testing); |.2&tjficial Intelligencq Problem Solving, Control Methods, and Search
— Graph and tree search strategies.

To appear in th011 IEEE International Conference on Computer ScienceAuntdmation Engineering
(CSAE 2011)June 10-12, 2011, Shanghai, China.

Department of Computer Science

The University of Texas at El Paso
500 West University Avenue

El Paso, Texas 79968-0518, U.S.A.

PWiseGen: Generating Test Cases for Pairwise Testing
Using Genetic Algorithms

Pedro Flores Yoonsik Cheon
Information Technology Department Department of Computer Science
Universidad Autbnoma de Ciudad Juarez The University of Texas at El Paso
Juarez, Mexico El Paso, Texas, U.S.A.
Email: pedro.flores@uacj.mx Email: ycheon@utep.edu

Abstract—Pairwise testing is a combinatorial testing technique how the fitness of an individual is calculated to measure the
that tests all possible pairs of input values. Although, finthg a individual’s potential, and (c) how the various genetic i@pe
smallest set of test cases for pairwise testing is NP-comfepair- 45 are defined. The description focuses on domain-specific
wise testing is regarded as a reasonable cost-benefit compnse feat f tic algorithm. i i enibst
among combinatorial testing methods. In this paper we formlate eatures ol our geng IC algorithm, 1.€., generallng paGRES
the problem of finding a pairwise test set as a search problemral ~ Sets. We also describe tool support called PWiseGen thid cou
apply a genetic algorithm to solve it. We also describe an ope serve as a framework for generating pairwise test sets using
source tool called PWiseGen for generating pairwise test & genetic algorithms. The tool is configurable, extensibheg a
PWiseGen produces competitive results compared with existy e saple, and thus will facilitate experimenting with giime
pairwise testing tools. Besides, it provides a framework amh a lgorith ' It let ¢ th . i fi t
research platform for generating pairwise test sets usinggnetic 2'90MtNMS. 1L1€lS one tune the various parameters ol gene
algorithms; it is configurable, extensible, and reusable. algorithms to find the best configuration, or to develop a new

) _))) ~algorithm, for a specific testing problem. To our knowledge,
Keywords: combinatorial testing, genetic algorithms, pairwisg; the only open-source tool available for generating paw

testing, software testing, test coverage. test sets using genetic algorithms.

We performed a series of experiments to assess, measure,
and evaluate the effectiveness of our genetic algorithnlaed

Pairwise testing is an effective, combinatorial testinchte PWiseGen tool. For the evaluation, we used the benchmark
nique that, for each pair of input parameters to a softwapeoblems available from the Pairwise Testing website [4g t
system, tests all possible combinations of these parametgebsite lists many tools for generating pairwise test seisie
[1]. It is based on the observation that most software erragifong with their efficiency measures given in terms of the
are caused by interactions of at most two factors such as inpumbers of test cases generated for the benchmark problems,
values. Its test suite is much smaller than that of exhagistivowever, most of these tools use some sort of deterministic
testing yet still very effective in finding errors. Howevene algorithms or strategies. Our approach is competitive at,th
problem of pairwise testing is that finding the least number eompared with the existing tools of which efficiency measure
test cases has been proven to be an NP-complete problem4?$ available, the PwiseGen tool showed equal or better
This means that an efficient way to find an optimal solutiogfficiencies on all benchmark problems except for one. Our
is not known and that the time required to find a minimurexperiments also showed the effectiveness of domain{apeci
number of test cases grows rapidly when the numbers lduristics such as fitness calculation and genetic opesatio
parameters and possible values increase. that we introduced to our genetic algorithm.

A genetic algorithm is a technique that simulates the nhtura In the remainder of this section, we provide a quick
process of evolution [3]. It was discovered as a useful tool foverview of pairwise testing and genetic algorithms. Secti
dealing with search and optimization-related problems ianddescribes the problem of generating pairwise testing Sets-
known to be effective for finding solutions for problems withion Il explains our genetic algorithm for generating péie
a huge search space and complexity. In a genetic algorithist sets by focusing on its key elements such as encoding of
a population of candidate solutions, calledlividuals to a individuals, fithess calculation, and genetic operatidBec-
problem evolves toward better solutions. The evolution i#on IV describes our tool support, the PWiseGen framework.
governed by so-called genetic operators such as mutatidn 8ection-V describes experiments that we performed to atalu
crossover that select and modify individuals to form a nethe effectiveness of our genetic algorithm. Section VI dsses
population. In general, a fitter individual has a better deanrelated work, and Section VII concludes this paper.
to survive and prevail in a population. o)

In this paper we formulate the problem of generating paift- Pairwise Testing
wise test sets as a search problem and apply genetic algsrith Pairwise testing is a combinatorial testing technique in
to solve it. We describe (a) how a candidate solution—a ss&hich every pair of input parameters of software is testdd [4
of test cases—is encoded as an individual of a populatign, (&]. It is regarded as a reasonable cost-benefit compromise

I. INTRODUCTION

among combinatorial testing methods; it can be performed reproduction, (b)crossoverthat combines the genes of
much faster than exhaustive testing that tests all combina- two parents and generates two new childrennfojation
tions of all input parameters, and is more effective thas les that modifies the genes of individuals randomly, and (d)
exhaustive methods that fail to exercise all possible pafirs replacementhat defines the rules of replacing existing
input parameters. The reasoning behind pairwise testititats individuals in a population with the newly created indi-
the majority of software errors are caused by a single input viduals.
parameter or a combination of two input parameters. Pagrwis
testing thus requires that each pair of input parameteregalu
be captured at least by one test case. As an example, let u®ne challenge of performing pairwise testing is to find a
consider software that takes three input parametersgsgy test set consisting of the least number of test cases thatzov
andz. If each parameter can have three different values, thath pairs of input parameters of the software under test. As
there will be 27 different pairsaf, y1), (x1, y2), - - ., (y3, z3). mentioned earlier, this problem is known to be NP-complete
A test cased1, ys3, 22), for example, captures three of these 2J2], meaning that an efficient way to find an optimal solution
pairs: @1, y3), (1, 22), and s, z3). By selecting test casesis not known and that the time required to generate the test
judiciously, all pairs of input parameters can be exercisggd cases grows rapidly with increased numbers of parameters
a minimum number of test cases; e.g., a set of nine test caagd possible values; there exist several algorithms tlafige
can capture all 27 pairs of three parameters, each with theexeptable solutions, however it remains uncertain if tle-s
different values. tions are optimums [4]. In this paper we address this problem
. . by formulating it as a search problem and applying genetic
B. Genetic Algorithms aﬁ;orithms. Tge specific reseaE:h problem is Itar?ui t?) gevelop
Genetic algorithms use biological models to emulate thegenetic algorithm capable of generating and minimizing as
process of evolution, where a population is made of a s@fuch as possible the number of test cases that contain all
of possible solutions calleshdividuals [3]. The search starts pairs of input values to a software system, in order to perfor
with an initial population of which individuals are typital pairwise testing.
generated randomly. The population is evolved into a newone problem of applying search-based algorithms such as
generation by applying operations inspired by genetics agénetic algorithms to pairwise testing is that there arepsim
natural selection, such as Se'eCtiOﬂ, crossover, and imlﬂllattoo many variables or parameters to the a|gorithm5 themselv
This evolution process is repeated until a solution is foundlg., crossover and mutation rates. These variables a@a oft
in the population or a certain stopping condition, e.g., thgeeded to be adjusted or tweaked through many experiments to
maximum number of iterations, is met. The search is guidéifld a best configuration for a given, specific testing problem
by a fitness function that calculates the fitness values of ting our knowledge, there is no open-source tool available for
individuals in the population in that the fitter ones have tidre test practitioners or researchers to find a pairwise teg"}tg
chance to survive and thus evolve into the next generatibe. Tusing genetic a|gorithm5, not to mention its Configurg&)i”t
effectiveness of a genetic algorithm is thus determinechirt pThe second problem to be addressed in this paper is thus to

Il. THE PROBLEM

by the quality of its fitness function. o develop an open-source tool that could serve as a framework
For an algorithm to be considered to be genetic, it shoulgr generating pairwise test sets using genetic algoritiihe
at least have the following key elements. tool should be configurable, extensible, and reusable so tha

« Chromosome encodinglhis is a way to represent avariations of the same algorithm could be experimented, or a
possible solution. A chromosome consists of genes repew algorithm could be easily developed using the frameyork
resenting a feature of an individual, and the possibfer a given problem.
values for a gene are called alleles. For example, the eye
color feature of a person is a gene, and the alleles for
the gene could be black, brown, blue, and green. TheAs explained in Section I-B, to use a genetic algorithm we
combination of genes in a chromosome is what definéisst need to represent a solution—in our case, test cases—
an individual's set of features, and its encoding can vatg our problem as a chromosome. The genetic algorithm
widely depending on the specific problem to be solvedthen creates an initial population of solutions and applies

« Fitness functionThis is a means to measure each individgenetic operators such as crossover and mutation to evolve
ual’s potential. It determines how good an individual ishe solutions in order to find the best one (see Figure 1). In
amongst all the others. The fithness value—calculated bgneral, the production of a new generation of the popuiatio
a fitness function and associated with each individual-eensists of three steps. First, two parents are selecteutfre
is the element used to determine which individuals hay®pulation based on the fithess values of the individuald, an
more opportunities to prevail in a population. then two children are produced through crossover by copying

« Genetic operationsThese are the rule for evolution,genes from parents. Second, mutation may be introduced into
as they are applied to the individuals of a populatiothe reproduction process by randomly changing some of the
to facilitate their evolutions. The most common genetigenes forming the children chromosomes. Third, a number
operations are (ayelectionthat selects individuals for of immigrants may be introduced into a new generation. An

Ill. GENETIC ALGORITHMS FORPAIRWISE TESTING

P = initializePopulation() Al Passible Values
i =0 o[
1 FF rowser
while (i < MAX_GEN && ! hasSol ution(P)) do 2 [own }"
cal cul at eFi t ness(P) 2
= 5 X creen
&= ; Pt}
while (|C| < NUM CROSSOVER) do 7 Dy
(p1, p2) = sel ectParents(P) 2 sosabed
(c1, c2) = crossover(pi, p2); 10 Meroiaiag| - cookies
if (mutate?) then
c1 = rth at e(Cl) ' Test case 1 ,Te—stc/asi Test case n I
c2 = nmutate(c); Chromosome [o]a]8]o[2]5[7[w0[3][s]7]5 3]5]8]9\~-iz]5]8]10f
end Test set size=n |
C = OU{Cl,CQ} 1\ 1\1\1\ Test case 2 mse—tl/
end g 56
if (inmigration?) then §§§§
I = createlmmgrants(); @ =
end g
P = updatePopul ation(P, CUI) @
é =141 Fig. 2. Integer array chromosome encoding
en
Fig. 1. Genetic algorithm seguence represents a test case, all the sequences in a chro-

mosome have the same length, which is equal to the number

of input parameters.
immigrant is a randomly generated chromosome that replaces

one of theT exi_sting individual_of Fhe populatiqn. This cyoe B Fitness Function
reproduction is repeated until either a solution is foundaor
predefined number of generations is produced. A fitness function determines how good an individual is. An
There are many variables that affect the performance iBflividual's fitness is what gives the individual the posio
genetic algorithms (see Section 1V), but the three most impd0 remain in a population and to be chosen for reproduction.
tant aspects of using genetic algorithms are: (a) definisibn This is one of the most important parts of a genetic algorithm
the genetic representation, known as chromosome encodiPggause we need to have a way to measure each individual in
(b) definition of the fitness function, and (c) definition of way that the strongest individuals are selected for prioduc
the genetic operations. Below we explain these key aspe@gver and even stronger individuals to achieve an evolution
in details. in the population.
When is an individual strong and promising? As our goal is
to find a (minimal) set of test cases that contains all possibl
We need to encode a set of test cases as an individual qiars of input parameters, a promising individual is the one
population. In the literature, there are several diffeemtod- that contains many different pairs; the more different pain
ing methods such as binary encoding, permutation encodingjividual has, the closer it is to a solution. Based on this
value encoding, and tree encoding [3]. We decided to use @lmservation we defined the following two fitness functions.
integer array encodings suggested in [5], mainly because of | cqnting the number of different pairdhis function
its easiness of manipulation. This encoding essentiafijest measures an individual’s fitness based on the number of

a set of test cases as an array of integer numbers, where each different pairs included in its chromosome. This is a very
number identifies a possible value of an input parameter of

the software under test.

A. Chromosome Encoding

straightforward fithess assessment since a larger number

,) of different pairs means a higher possibility of capturing
AS an example, let's consider a Web based system that has pairs [5]. Note that since the total number of pairs that

four different input parameters to be tested. should be captured is known and easy to calculate, it can
« Browser: Internet Explorer (IE), Firefox (FF), Opera, and pe easily determined if an individual is a solution. An

Safari _ individual is a solution if the number of different pairs
« Screen resolution: 800600, 1024768, and 1282800 contained in its chromosome equals the total number of
« JavaScript: JSEnabled and JSDisabled required pairs.
« Cookies: CkEnabled and CkDisabled « Penalizing for repeated pairg his function is a variation

Figure 2 shows a sample chromosome representing a set of of the above fitness function and penalizes the fitness if
test cases. As shown, a test case is a sequence of numbers,the same pair appears more than a certain number of
where each number identifies a particular value of a certain times. An individual’s fitness is calculated in the same
input parameter of the software under test, e.g., 0 for the way as the different pairs function, but the number of
Internet Explorer and 1 for Firefox. Thus, a chromosome repeated or duplicate pairs is also counted to penalize
is simply a collection of sequences of numbers. As each the fitness.

Test case 1 Test case 3

C. Genetic Operations (, (,
Chromosome—{[o|4|3|g[lo10[3]5]7]9 |.3 [6[8] 9!}

Defining genetic operators is like establishing the rules of

. . . Sestlasez Test Case 4
evolution. We implemented common genetic operators such as
selection, crossover, replacement, immigration, and tiouta ﬂ
Among these, crossover and mutation have the most influence e W e
on the performance of a genetic algorithm. Before we explain C'"°m°‘°me—{}
these two operators in detail, we first describe the other Testlasez Tetimed

operators briefly.
The selection operator selects parents for reproductimh, a
the most common method is the roulette wheel selection that

Fig. 3. Similarity mutation

assigns to each individual of the population the probabdit the execution of the algorithm.
being selected [3]. This probability is calculated basedren , Multiple random crossover pointsThis method also
fitness value of an individual, and thus individuals withHeg makes the crossover in several points of the chromosome,

fitness values have better chances of being selected. When put unlike the previous, the positions where the crossover

two parents are combined and a reproduction occurs, two New happens is always varying. Each time when two individu-
children are generated and become members of the population als are to be combined, random positions for the crossover
by substituting two existing members. For the substitytion gre determined.

we implemented two different replacement strategies: thez) Mutation: Mutation plays a very important role in our

weakest individual replacement and the parent complemef{ i m we learned through experiments that withoutamut
replacement. The first strategy replaces the individuahef tyoq ingiviguals show improvements only in the first few gen-
lowest fitness vglu_e._ The second strategy adapted from Eﬁhtions, reaching a stagnation in the subsequent gemerati
removes those individuals whose ranks are the complemgil 5154 jearned that a higher mutation rate makes the genetic
of the parents’ ranks. Given a population of 30 individual$;qqrithm find a solution faster. There are studies stativag t

for example, if individuals of ranks 1 and 5, respectivele ayho ontimal mutation rate strongly depends on the selection
sele_ctgd_ for reproduction, the individuals to be replacétl Wt tha chromosome encoding and algorithms that don't use
be individuals of ranks 29 (complement of rank 1) and Zﬁit encodings could benefit from a higher mutation rate [6].

(complement of rank. 5). The reason IS t_hat even the IeaSt\f\'fe implemented several variations for mutation. In random
individual may contain valuable information and should éna

i R s . Vmutation, the genes to be mutated are randomly selected,
some measure of protection from elimination. The immigrati and their values are replaced with randomly selected values

operator is used to introduce some randomness to a pom'laﬂgwever, the new values must be valid for the genes. Below we

durln_gde_v_(()jlunlon_tr:) d|verg|fy Ithe |nd|V|dudaIsH It introdes a r?xplain the other mutation schemes knowmsamrt mutations
new individual with a randomly generated chromosome to the a) Similarity Mutation: The objective of this mutation is

population by replacing an existing individual. It may aj’Oi_to replace a similar gene, i.e., a test case. The logic behind

stagnation inthe F".’p“'a“"” when an improvement is notg)el is that, if an individual has two very similar test cases,
achieved and individuals are not able to obtain more pairs Ry;c very likely that the individual's fitness will improve

using the genetic operators. ~_if one is replaced with a different test case. This scheme

1) Crossover:The crossover allows us to combine individyeqyires a similarity threshold to be specified, which beiic
uals that were selected for reproduction. The basic idea isdetermines whether two test cases are similar or not. With
produce better individuals by combining the chromosomes gf 750 similarity threshold, for example, a test case that is
the selected parents. There are many different ways tomerfoy; jeast 759% similar to another is mutated. As an example,
the crossover, and we implemented four different variaion -qnsider a chromosomé)|4|8|9](0]4/8|10][3]5|7|9]3]6/8]9],

« Single crossover pointin this method, a crossover atconsisting of four test cases (see Figure 3). The first two
a single point is made, and the crossover point is tlest cases are similar, and thus one of them will be mutated.
middle of the chromosome. This crossover point remail¥epending on the configuration of the algorithm, either the
the same throughout the algorithm’s execution. new values are selected randomly or selected are thosesvalue

« Single random crossover poifithis method is used whenthat occur in the chromosome the least frequently.

a single crossover point at a variable position is desired. b) Value Occurrences MutationThis mutation attempts
Each time a crossover is made, the position where the replace a duplicate value of an individual with a miss-
crossover happens is determined randomly. ing value to improve the individual’'s fithess. For this, it

« Multiple crossover pointdn this method, the crossover istries to find a value that is not present in any of the
made at various points of the chromosome. The numiktest cases contained within the chromosome of the indi-
of crossover points can vary, and depending on the nuridual to be mutated. As an example, consider a chromo-
ber of crossover points, the crossover positions will b&me, [0]4]8]9][0]5]7]10][3]5|7]9][2|6]8|9], consisting of four
divided evenly over the chromosome. Once determine@st cases. The value 1, denoting Firefox, is not present in
the crossover positions will remain the same throughotitis chromosome. It can only appear in the first slot of a test

4

case. Therefore, the fist slot of every test case is checkeg <FI’€)<m \\/{:rEsi on="1.0" en\C/{Jdi ng:' UTF- ? ?f> 0o
. . . <! DOC t t Lo)>
a duplication. It turns out that the value 0, denoting |rmrn<p,opeme§"32?;i 'oﬁi(l ors oree tor T foctype)

Explorer, appears twice, i.e., in the first and second tests;a <entry tey=" IPS_Pa: EmsFi Ixe" ;t;uef/ entry>
. . < =" '>1< >
thus one of them will be replaced with the value 1. <§2t:§ kg:u pL'p& ati oxSi 26" >§3<;Zmry>

c) Pair Occurrences Mutation:This mutation is more| <entry key="Test Set Si ze">12</entry>
<entry key="MaxGenerations">1000000</entry>

complex than the value occurrences mutation but has the Sam&: ry key="Fit nessFuncti on">Di f f er ent Pai r sFi t ness</ ent ry>

principle in that it attempts to increase the number of déffg | <entry key="Parent Sel ector”>Roul et t eVheel Sel ect or </ ent ry>
<entry key="Crossover Strategy">M/Crossover</entry>

pairs appearing in an individual. As an example, consider
a chromosome)[48|9][0[5[8]10][3]5]7|9][2]6]7|10], consisting | =enry ::Zy:_';ﬁir;ggra;?f&'\/ﬂi?teingg\s/léigi'/':gi?1§/entry>
of four test cases. This chromosome contains the pair ()@Sr opgrti)és> g

twice, i.e., in the first and second test cases. It can be leédtl

that the pair (0,7) doesn’t appear in the chromosome and can

Fig. 4. XML-based configuration

replace one of the (0,8) pairs. This example also illussrate
shortcoming of the pair occurrences mutation. If we modit P —
the first test case to introduce a (0,7) pair, i.e.[ap|7]9], e Problem 2: 313

Problem 3: 415317 229
Problem 4: 41339235
Problem 5: 2100
100 Problem 6: 102°

we gain two new pairs (0,7) and (4,7) but also loose existit
pairs made up of the value 8, i.e., (4, 8) and (8, 9), as well
introducing a duplicated pair (7, 9) in the first and thirdtte:
cases.

Number of test cases

re—— | — | | l L
Problem 1 Problem2

IV. THE PWISEGEN TOOL °

AETG 9 15
wipG

To address the problem of tool support mentioned in Se =
tion 11, we developed an open-source tool that implemergs t =«
genetic algorithm explained in the previous section. Tow,t
called PWiseGen, can also be used as a framework for appy: 5. Efficiencies of pairwise testing tools. A problem @fesz¥ means
ing genetic algorithms to pairwise testing. For this, we e that it takesz parameters, each with distinct values.
eral design goals including configurability, extensiljliand

reusability. In order to achieve these design goals we heavi i o
used object-oriented concepts such as inheritance, diregri done, one only needs to change the XML configuration file to

and polymorphism. We also used several well-known desi§RECITY this new class as the crossover strategy (see Fgure

patterns such as the strategy design pattern and the templat V. EVALUATION

method [7]. Another key design approach is the use of an) .

XML-based configuration to specify various parameters ef th e conducted a series of experiments to evaluate the
genetic algorithm, as well as new components impIementit"?ﬁec;t_“’en,ess of our genetic algorithm. The Pairwise Testi
genetic operators. website lists quite a few tools for generating pairwise test

The PWiseGen implementation consists of several progrzfl‘flts' some with their eff_iciency measures [4]. The efficiency
modules such as initialization, fitness calculation, andev ©' @ tool was measured in terms of the numbers of test cases
tion, and these modules are separated from the main algori'[f:{rc.)d.uce.d by the tool for several benchmark prpblems. The
module through well-defined interfaces. Each module comggiciencies of these tools werf Cog‘paﬂidlﬁsggg S|1x ?fgghmar
with abstract classes and a collection of concrete clasgégoblems o;odn‘ferent sizes3 . 3 " 4737127, 47372 !

that implement the interfaces. For example, @i@ssover 2 ! and10*, where the note}tlora:_ means a problgm with
interface of the evolution module specifies the protocol fof input parameters, each witp distinct values. Figure 5

implementing the crossover genetic operator. An absttassc ;T;;WS (tsheﬁe'filmencytrr]n easi”ef of thlesg At\(ln:)(fll,salong with tha'i_o
Crossover St r at egy, provides a template for implement- ISe’>en. Among these 1ools, only Uses a genetic

?Eb orithm [5], and the rest use some sort of deterministic
a

wlo © e v
=3

ing a crossover strategy. It uses the template method des gor! : . . .
pattern and includes methods for determining crossovert®oi gorithms; AETG is a commercial web service [1], IPO

and performing the actual crossover operation. This attstry>€S the in-parameter-order algorithm [2], and TConfig 8]

class has several concrete subclasses that implemenugarﬁﬂd CT|§V\E-9] (l;se orr]thogonal ar:g;ys (seeItSeltt:tlohn Vi). ASI
crossover strategies (see Section I11-C). shown, iseGen shows competitive results. It shows equa

. . or better efficiencies on all the benchmark problems exaapt f
The use of interfaces makes the tool extensible, and the yse . .
! . : € last one. It even outperformed a genetic algorithm-tbase
of an XML-based configuration makes it plug-and-playabl

S APTS tool on two benchmark problems; however, it was
For example, one can easily introduce a new crossovergjrate
. o outperformed on the last problem.
by defining a new crossover class, $4yCr ossover ; it can

be a SUbC!aSS of the abstraCt cl@sossover Str at e_g¥ 1Unfortunately, we was not able to compare time and spacdesfties, as
or directly implement the interfacg ossover . Once this is these measures were not available for the existing tools.

As mentioned earlier, crossover and mutation are two masta two-dimensional array of numbers that have a particular
important genetic operations that greatly affect the perfovalue distribution—any two columns have the same number
mance of a genetic algorithm. For the crossover operatiaf, different value pairs. The AETG system uses yet another
we used well-known strategies such as single and multige&ategy [1]. It generates a pairwise test set incremegnisll
crossover points. However, for the mutation operation, waarting with an empty set and adding one test case at a time
introduced the notion of smart mutations that use heusistiEach time a new test case is needed, it produces a certain
specific for the generation of pairwise test sets, such msmber of candidate test cases based on a greedy algorithm,
comparing similarity of test cases and counting duplicatnd selects the one with the largest number of pairs that have
values or pairs (see Section III-C). We observed that thetsmaot been captured yet.
mutation is on average 1.35 times faster than the random
mutation in terms of the number of generations needed to
find a solution. We also learned that the value occurrencesVe formulated the problem of pairwise testing as a search
mutation and the pair occurrences mutation are 1.41 and 1Rf@blem and applied genetic algorithms to find pairwise test
times faster than the similarity mutation. sets. We also developed a support tool called PWiseGen that

One practical problem of using genetic algorithms is th&euld be used as a framework for generating pairwise test set
there are too many variables that may affect the performark@ng genetic algorithms. Our approach showed competitive
of the algorithms. For example, the PWiseGen tool has abd@gults compared with existing approaches and tools far pai
30 different configurable parameters; some parameters sWge testing. The key contributions of our work include (a) a
as mutation strategy have a few discrete values, but oth8getic algorithm-based approach for generating pairteise
such as mutation rate have continuous values (see Figur&els, (b) an open-source framework called PWiseGen, and (c)
in Section 1V). The user is perplexed by the large number §&mple configurations and guidelines for using, adaptind, a
parameters and their possible values, and it's a dauntikgtta extending the framework. To our knowledge, our study is few
find an optimal configuration for a given problem. To allegiatwork that applies genetic algorithms to pairwise testing] a
this problem, the PwiseGen tool provide a dozen of predefinBYViseGen is the only open-source tool for generating pagwi
configurations. We performed a series of experiments to cofist sets using genetic algorithms; the tool is availatenfr
pare these configurations using the six benchmark problefist p: // code. googl e. com p/ pwi segen/ .

The results are varying for different problems, but in gaher
C3—that uses multiple crossover with 2 crossover points—is ,)
best for small number of input parameters and C6—that used-heon’s work was supported in part by NSF grants CNS-
multiple random crossover with 5 crossover points—is belf07874 and DUE-0837567.

for large number of input parameters. REFERENCES

VIl. CONCLUSION

ACKNOWLEDGMENT

V]. RELATED WORK [1] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. Patton, “RETG
o)) system: an approach to testing based on combinatorial fesBEE
We know of few publications on applying genetic al- Transactions on Software Engineerjngl. 23, no. 7, pp. 437-444, Jul.

gorithms to the problem of generating pairwise test sets, 1997 . .
. . . 2] V. Lei and K. Tai, “In-parameter-order: a test genematistrategy for
Ghazi and Ahmed suggested the use of genetic algorith pairwise testing,” inProceedings of the Third IEEE International High-

to maximize pairwise coverage in testing the interaction be Assurance Systems Engineering Symposium, November 12598,

; _ Washington, DC IEEE Computer Society, 1998, pp. 254-261.
tween SOﬂwarg componen_ts_ .[10]' quever’ th.elr Wor.k fo [3] M. Mitchell, An Introduction to Genetic Algorithms The MIT Press,
cused on proving the feasibility of using genetic algorithm "~ 1gg9.

without showing much details of the algorithm itself. Their[4] J. Czerwonka. (2010, Dec.) Pairwise testing, combinaitctest case

experimental results didn't include efficiencies measuvad generation. [Online]. Available: http://www.pairwisego .
. L . [5] J. D. McCaffrey, “An empirical study of pairwise test sgéneration
the benchmark problems available from the Pairwise Testing” (sing a genetic algorithm.” ifTNG 2010: 6th International Conference

website [4]. McCaffrey described his genetic algorithm #rel on Information Technology: New Generations, April 12-181@, Las
GAPTS tool in general terms including the genetic operatort% Vegas, NV IEEE Computer Society, 2010, pp. 992-997.

. . .J6] D. M. Tate and A. E. Smith, “Expected allele coverage amel tole of
used [5]. He also showed experimental results obtained with" yytation in genetic algorithms,” iRroceedings of the 5th International

the benchmark problems (see Section V). However, his source Conference on Genetic AlgorithmsSan Francisco, CA, USA: Morgan

i i e i i Kaufmann Publishers Inc., 1993, pp. 31-37.
code is not available, and this in fact inspired our workm E. Gamma, R. Helm, R. Johnson, and J. Vissidassign Patterns: El-

McCaffrey used only Stan(_j?-rd gerl‘le.tic operators and didn't" gments of Reusable Object-Oriented SoftwaReading, MA: Addison-
make use of problem-specific heuristics. Wesley, 1995.

imiati ; 3] A. Williams and R. Probert, “A practical strategy for tesg pair-
There are several deterministic algomhms capable of QEI{\S wise coverage of network interface§bftware Reliability Engineering,

erating test cases for pairwise testing [4]. However, itagms International Symposium omp. 246-254, 1996.
uncertain if the generated test cases are optimal in terrgeof [9] A. Hartman and L. Raskin, “Problems and algorithms fovering

g i~ arrays,’Discrete Mathematigsvol. 284, no. 1-3, pp. 149-156, Jul. 2004.
number of test cases. One such a pairwise test set generaﬂ&n S. A Ghazi and M. A. Ahmed, “Pair-wise test coveragengsgenetic

strategy is Calle(_in-p-arameter-order (lpo):hat_cor‘StrUCts a algorithms,” in The 2003 Congress on Evolutionary Computation, Vol-
test set by considering one parameter at a time [2]. Another ume 2, December 8-12, 2003, Canberra, AustralidEEE Computer

strategy is to userthogonal arrays[8]. An orthogonal array Society, 2003, pp. 1420-1423.

