
Extending Java for Android Programming
Yoonsik Cheon

TR #12-13
April 2012

Keywords: application framework, domain specific language, Android, Java.

1998 CR Categories: D.2.3 [Software Engineering] Coding Tools and Techniques — Object-oriented
programming; D.3.2 [Programming Languages] Language Classifications — Specialized application
languages; D.3.3 [Programming Languages] Language Constructs and Features — Control structures,
frameworks, classes and objects.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.

Extending Java for Android Programming
(An Extended Abstract)

Yoonsik Cheon
Department of Computer Science

The University of Texas at El Paso
El Paso, Texas, U.S.A.

ycheon@utep.edu

Abstract—Android is one of the most popular platforms for
developing mobile applications. However, its framework relies on
programming conventions and styles to implement framework-
specific concepts like activities and intents, causing problems such
as reliability, readability, understandability, and maintainability.
We propose to extend Java to support Android framework
concepts explicitly as built-in language features. Our extension
called Android Java will allow Android programmers to express
these concepts in a more reliable, natural, and succinct way.

I. INTRODUCTION

Android is an open-source and rapidly growing platform
for developing applications running on mobile devices such
as smartphones and tablet computers [1] [2]. It consists of
a Linux-based kernel, libraries, and a Java-compatible ap-
plication framework. The application framework provides a
semi-complete application that can be specialized to produce
a custom application quickly [3]. It defines conventions for
extending classes provided by the framework so that newly
added, application-specific classes can interact correctly with
the framework classes as well as themselves.

However, the Android framework has a steep learning
curve; it takes a long time to learn and be able to use the
framework effectively. Reliability is a more serious issue. The
framework relies on conventions to implement framework-
specific concepts like activities and intents (see Section II). If
these conventions are violated, an application may not work
correctly. But, there is no automatic way of detecting such
violations or enforcing the framework conventions.

In this position paper we propose a solution to the above
problem. The key idea of our solution is to extend the
Java programming language to support Android framework
concepts like activities and intents as built-in language features
by introducing a few new language constructs. The extension
will allow one to not only express these concepts in a succinct
and natural way but also check them automatically.

II. THE ANDROID FRAMEWORK

Two fundamental concepts of the Android application
framework are activities and intents. Activities are building
blocks of Android programming in that an Android application
consists of one or more activities. An activity is a single screen
in an application, with supporting code. At runtime, there is a
stack of activities, each created for one unique screen of the
user interface. An activity may invoke another activity, and the

public class MainActivity extends Activity {
public void onCreate(Bundle savedState) {

...
Intent i = new Intent("edu.utep.cs.GRADE");
Bundle extras = new Bundle();
extras.putString("name", "Joe");
i.putExtras(extras);
startActivityForResult(i, 0);

}

public void onActivityResult(int id, int o, Intent r) {
if (id == 0 && o == RESULT_OK) {

Bundle extras = r.getExtras();
... extras.getString("grade") ...

}
}

}

public class GradeActivity extends Activity {
public void onCreate(Bundle savedState) {

...
Bundle extras = getIntent().getExtras();
if (extras != null) {

String name = extras.getString("name");
String grade = findGrade(name);
Intent r = new Intent();
Bundle extras = new Bundle();
extras.putString("grade", grade);
r.putExtras(extras);
setResult(RESULT_OK, r);
finish();

}
}

}

Fig. 1. Sample Android code

invoked activity is pushed onto the top of the activity stack and
becomes visible. The invoked activity is popped from the stack
when its execution is finished, making the previous activity to
resume its execution. Android runs each activity in a separate
process each of which hosts a separate virtual machine. This is
to provide a sandbox model of application execution to protect
the system and other applications from badly-behaved code.
One consequence of this decision is that an activity cannot
directly invoke another activity.

Android introduces another concept called an intent to
combine and glue activities. An intent is a message to the
Android system asking for performing a certain action on
certain data. Upon receiving an intent, the system locates and
starts an activity that can perform the requested action on the
requested data. If an action requires additional data or returns
results, they are piggy-backed on intents. In short, activities
are invoked indirectly using intents, and intents are the core
of the Android message system.

Figure 1 shows sample code illustrating the use of activities

public activity MainActivity {
public void onCreate(Bundle savedState) {

...
calls("edu.utep.cs.GRADE", "Joe")

receiving(String grade) {
... grade

};
}

}

public activity GradeActivity {
receives String name;
provides String grade;

public void onCreate(Bundle savedState) {
...
String grade = findGrade(name);
returns(grade);

}
}

Fig. 2. The sample code rewritten in Android Java

and intents. It defines two activities, subclasses of the Activity
class, and the first activity invokes the second. The framework
method, startActivityForResult, invokes an activity
by taking two arguments, an intent and a request code. The
intent specifies the activity to be invoked along with optional
arguments bundled as key-value pairs. The request code is an
integer identifying a particular invocation. The main activity
also defines a callback method, onActivityResult, to
be invoked upon completion of the execution of an invoked
activity. Because a single callback method handles all activity
invocations, the request code—identifying the invocation—is
provided as the first argument. As shown in the definition
of the second activity class, results are returned by calling
two framework methods, setResult, and finish. The
finish method makes the control to return to the invoking
activity and thus its callback method to get executed.

III. THE PROBLEM

The Android framework relies on conventions and program-
ming styles to support the concepts of activities and intents,
and this causes several problems.

• Reliability. Several factors contribute to this problem,
including no parameter validation and no checking for
framework conventions, e.g., overriding callback methods
like onActivityResult and calling framework meth-
ods like setResult and finish. Manually bundling
activity arguments is error prone, and missing definitions
or statements may cause subtle errors that are often hard
to detect and diagnose.

• Readability. The source code is not only verbose but
also less readable, understandable, and maintainable.
For example, the location where an activity is invoked
and that of the results become available and used
(onActivityResult method) are different. Note also
that a single callback method handles the results of all
invocations, resulting in error-prone case analysis code.

• Learning curve. Learning framework classes and their
protocols—expected ways of using them, e.g., method
overriding and calling—takes a time.

IV. OUR APPROACH—ANDROID JAVA

The key to our approach is to extend Java to support
Android framework concepts as built-in language features. For
this, we introduce a few new language constructs for activity
declarations and invocations. Figure 2 shows the sample code
from Section II rewritten in our extended Java, called Android
Java. Activities are now built-in language concepts like classes
as indicated with the use of the keyword activity. As shown
in the GradeActivity activity, an activity declaration may
include optional parameter declarations, receives and provides
statements declaring input and output parameters. The activity
parameter declarations specify the signature of an activity—
the numbers of arguments and return values, their orders, and
their types. The returns statement is used to return from an
activity with optional results. An activity is invoked using the
calls statement that specifies the name of the activity to be
invoked, along with activity arguments; an optional receiving
clause specifies the code to handle return values.

By mapping framework concepts to programming language
constructs, Android Java addresses all the problems described
previously. An explicit declaration of activity parameters will
enable us to perform parameter validation, either statically or
dynamically. An activity invocation and return is expressed in
a more concise, natural, and readable way. One only needs to
learn a few new language constructs that explicitly support the
concepts of activities and intents.

V. DISCUSSION

Android Java may be implemented in several ways includ-
ing preprocessing, compiling, and annotations. Preprocess-
ing is the easiest and quickest way to implement Android
Java. Android Java code can be translated to plain Java
code by essentially converting (a) the calls statement to a
startActivityForResult method call wrapped with
an appropriate check for parameter validation and (b) the
receiving clause to the onActivityResult method with
dispatching code. An Android Java compiler may be built to
produce virtual machine code directly, by extending an open-
source Java compiler like OpenJDK and Eclipse. Yet another
possibility is to translate or express Android Java constructs
in Java annotations and write an annotation preprocessor;
however, this requires support for statement-level annotations.

Although we considered only activities and intents, there are
many other concepts and features of the Android framework
that could also be explicitly supported in Android Java, and the
general problem is to map these features—currently supported
in framework conventions and styles—to built-in language
constructs in Java-based, domain specific programming lan-
guages.

REFERENCES

[1] Google, “Android website,” —http://www.android.com/—.
[2] D. Gavalas and D. Economou, “Development platforms for mobile

applications: Status and trends,” IEEE Software, vol. 28, no. 1, pp. 77–86,
Jan.-Feb. 2011.

[3] R. E. Johnson, “Frameworks = (components + patterns),” Communica-
tions of the ACM, vol. 40, no. 10, pp. 39–42, Oct. 1997.

2

