
Constructing Verifiably Correct Java Programs
Using OCL and CleanJava

Yoonsik Cheon and Carmen Avila

TR #13-15
February 2013; revised: May 2013

Keywords: correctness proof, functional program verification, intended function, CleanJava, Object
Constraint Language.

1998 CR Categories: D.2.2 [Software Engineering] Design Tools and Techniques — Modules and
interfaces, object-oriented design methods; D.2.3 [Software Engineering] Coding Tools and Techniques
— Object-oriented programming; D.2.4 [Software Engineering] Software/Program Verification — Class
invariants, correctness proofs, formal methods; F.3.1 [Logics and Meanings of Programs] Specifying and
Verifying and Reasoning about Programs — invariants, pre- and post-conditions, specification techniques.

Department of Computer Science
The University of Texas at El Paso

500 West University Avenue
El Paso, Texas 79968-0518, U.S.A.

Constructing Verifiably Correct Java Programs
Using OCL and CleanJava

Yoonsik Cheon and Carmen Avila
Department of Computer Science

The University of Texas at El Paso
El Paso, Texas, U.S.A.

ycheon@utep.edu; ceavila3@miners.utep.edu

Abstract—A recent trend in software development is building
a precise model that can be used as a basis for the software
development. Such a model may enable an automatic generation
of working code, and more importantly it provides a foundation
for correctness reasoning of code. In this paper we propose a
practical approach for constructing a verifiably correct program
from such a model. The key idea of our approach is (a)
to systematically translate formally-specified design constraints
such as class invariants and operation pre and postconditions
to code-level annotations and (b) to use the annotations for
the correctness proof of code. For this we use the Object
Constraint Language (OCL) and CleanJava. CleanJava is a
formal annotation language for Java and supports Cleanroom-
style functional program verification. The combination of OCL
and CleanJava makes our approach not only practical but
also suitable for its incorporation into existing object-oriented
software development methods. We expect our approach to
provide a practical alternative or complementary technique to
program testing to assure the correctness of software.

Keywords: correctness proof, functional program verification,
intended function, CleanJava, Object Constraint Language.

I. INTRODUCTION

A recent software development trend is a shift of focus
from writing code to building models [1]. The ultimate goal
is to systematically generate an implementation from a model
through a series of transformations. One key requirement of
this model-driven development is the availability of a precise
model to generate working code from it. A formal notation
such as the Object Constraint Language (OCL) [2] can play an
important role to build such a precise model. OCL is a textual,
declarative notation to specify constraints or rules that apply to
models expressed in various UML diagrams [3]. Modeling and
specifying design constraints explicitly is also said to improve
reasoning of software architectures and thus their qualities [4].

A formal design model can also provide a foundation for
correctness reasoning of an implementation. In this paper we
propose one such a method that takes advantage of formal de-
sign models to construct verifiably correct programs. The key
idea of our approach is to derive code-level annotations from
a formal design and to prove the correctness of code using
a Cleanroom-style functional program verification technique.
We use OCL as the notation for formally documenting design
decisions and constraints and CleanJava as the notation for
writing code-level annotations. CleanJava is a formal annota-
tion language for the Java programming language to support

Cleanroom-style functional program verification [5] (see Sec-
tion II-B for an overview of CleanJava). A functional program
verification technique such as Cleanroom [6] [7] views a
program as a mathematical function from one program state
to another and proves its correctness by essentially comparing
two functions, the function computed by the program and its
specification [8] [9] [10]. Since the technique uses equational
reasoning based on sets and functions, it requires a minimal
mathematical background, and unlike Hoare logic [11] it
supports forward reasoning, reflecting the way programmers
informally reason about the correctness of a program.

It is a known fact that software contains defects. Defects are
introduced during software development and are often found
through testing. However, studies indicate that testing can’t
detect more than 90% of defects; 10% of defects are never
detected through testing. As stated by a famous computer
scientist, testing has a fundamental flaw in that it can show
the existence of a defect but not its absence. We expect our
approach to provide a practical alternative or complemen-
tary technique to program testing to assure the correctness
of software. We believe that the combination of OCL and
CleanJava make our approach more practical and approachable
by practitioners.

There has been an approach proposed to combine Clean-
room methodologies and formal methods [12], however there
is no work done on combining OCL and functional program
verification. Stavely described an approach to integrating the Z
specification notation [13] into Cleanroom-style specification
and verification [14]. One interesting aspect of his work is
that a Z specification is converted to a constructive form, ex-
pressing state changes in an assignment notation. In this way,
a Z specification can serve as a specification function for the
program code to be developed, and the development can pro-
ceeds in Cleanroom style by verifying every section of code.
Our approach also takes advantage of OCL constraints written
constructively by translating them automatically to CleanJava
annotations using a set of translation rules. However, we also
learned that such constraints raise some interesting questions
(see Section VI). Another related work is the translation of
OCL to JML [15]. JML is a behavioral interface specification
language for Java [16] [17]. In this work, JML is used as an
assertion language for Java in that a subset of OCL constraints
is translated into JML assertions for both static reasoning and
runtime checks. One important contribution of this work is the

Square

/isMarked: boolean

1

players
{ordered} 2

1

squares

0..1
player

0..*

Player

+nextMove(): Square

TicTacToe

+play(): void

x: 0..2
y: 0..2

game

inv: squares[*,*].player->forAll(p|players->includes(p))inv: squares[*,*].player->forAll(p|players->includes(p))

pre: game.squares[*,*]->exists(s | not s.isMarked)
post: not result.isMarked and

game.squares[*,*]->includes(result)

pre: game.squares[*,*]->exists(s | not s.isMarked)
post: not result.isMarked and

game.squares[*,*]->includes(result)

markedBy

derive:
player->notEmpty()

derive:
player->notEmpty()

Fig. 1. UML class diagram with OCL constraints

translation rules from OCL to JML. Assertions are said to be
more effective when derived from formal specifications, and
several different techniques have been proposed for translating
OCL constraints to runtime assertion checks [18].

The remainder of this paper is structured as follows. In
Section II we briefly explain OCL and CleanJava using an
example. In the subsequent two sections we first give an
overview of our approach and then apply it to our running
example. In Section V we describe our translation of OCL
constraints to CleanJava annotations, and in Section VI we
discuss some interesting aspects of our translation. In Sec-
tion VII we provide a concluding remark.

II. BACKGROUND

A. Object Constraint Language

The Object Constraint Language (OCL) [2] is a textual,
declarative notation to specify constraints or rules that apply
to UML models. OCL can play an important role in model-
driven software development because UML diagrams lack
sufficient precision to enable the transformation of a UML
model to complete code. In fact, it is a key component of
OMG’s standard for model transformation for the model-
driven architecture [19].

A UML diagram alone cannot express a rich semantics of
and all relevant information about an application. The diagram
in Figure 1, for example, is a UML class diagram modeling the
game of tic-tac-toe. A tic-tac-toe game consists of 9 places in
a 3×3 grid, and two players take turns to mark the places and
win the game by marking three places in a horizontal, vertical,
or diagonal row. However, the class diagram doesn’t express
the fact that a place can be marked only by the two players
participating in the game. It is very likely that a system built
based only on diagrams alone will be incorrect. OCL allows
one to precisely describe this kind of additional constraints
on the objects and entities present in a UML model. It is
based on mathematical set theory and predicate logic and
supplements UML by providing expressions that have neither
the ambiguities of natural language nor the inherent difficulty
of using complex mathematics. The above-mentioned fact, for
example, can be expressed in OCL as follows.

context TicTacToe
inv: squares[*,*].player->forAll(p|players->includes(p))

//@ f0:[squares := Square[][]->any(sqs| isGameOver(sqs))]
//@ f1:[p := nextPlayer()]
Player p = nextPlayer();

/*@ f2:[squares, p := Square[][]->any(sqs| isGameOver(sqs)
@ && isSubState(squares, sqs)), anything] where
@ isSubState(s1,s2) = (* s1 is substate of s2 *) @*/

while (!isWonBy(p) && hasEmptySquare()) {
/*@ f3:[sq.player, p := p, nextPlayer()]
@ where sq = p.nextMove() @*/
p = nextPlayer();
Square sq = p.nextMove();
sq.setPlayer(p);

}

Fig. 2. Sample CleanJava code

This constraint, called an invariant, states a fact that should
be always true in the model. The invariant is written using
OCL collection operations such as forAll and includes;
the forAll operation tests whether a given condition holds for
every element contained in the collection, and the includes

operation tests whether an object is contained in a collection.
It is also possible to specify the behavior of an operation

in OCL. For example, the following OCL constraints specifies
the behavior of an operation Player::nextMove():Square

using a pair of predicates called pre and postconditions.

context Player::nextMove():Place
pre: game.squares[*,*]->exists(s|not s.isMarked)
post: not result.isMarked and

game.squares[*.*]->includes(result)

The above pre and postconditions states that if invoked in
a state that has at least one unmarked square the operation
returns an unmarked square. In the postcondition, the keyword
result denotes the return value.

B. CleanJava

CleanJava is a formal annotation language for the Java
programming language to support Cleanroom-style functional
program verification [5]. In the functional program verifica-
tion, a program is viewed as a mathematical function from one
program state to another. In essence, functional verification
involves calculating the function computed by code, called a
code function, and comparing it with the intention of the code
written also as a function, called an intended function [8] [9]
[10]. CleanJava provides a notation for writing intended func-
tions. A concurrent assignment notation, [x1, x2, . . . , xn :=
e1, e2, . . . , en], is used to express these functions by only
stating changes that happen. It states that xi’s new value is
ei, evaluated concurrently in the initial state—the state just
before executing the code; the value of a state variable that
doesn’t appear in the left-hand side remains the same. For
example, [x, y := y, x] is a function that swaps the values of
two variables x and y.

Figure 2 shows sample Java code annotated with intended
functions written in CleanJava. It shows partial code of the
play method of the TicTacToe class. Each section of code is
annotated with its intended function. A CleanJava annotation
is written in a special kind of comments either preceded by

2

//@ or enclosed in /*@ and @*/, and an intended function
is written in the Java expression syntax with a few CleanJava-
specific extensions. The first annotation labelled f0 states that
the new value of the squares field is an arbitrary value of
a game-over state. In CleanJava, a type such as Square[][]
can be used to denote the set of all values belonging to
it, and any is a collection iterator that denotes an arbitrary
value of a collection that satisfies a given condition; CleanJava
defines several other collection iterators such as forAll and
exists. The intended function labelled f2 is interesting, as
it shows several features of CleanJava. First, the keyword
anything denotes an arbitrary value and its use indicates that
one doesn’t care about the final value of the local variable p.
Second, a where clause introduces local definitions like the
isSubState function. Third, in CleanJava one can escape
from formality and mix a formal text such as a Java expression
with an informal description, any text enclosed in a pair of
(* and *). For example, the notion of substate between two
Square[][] objects—i.e., the isSubState function—is defined
informally. The example also shows that one can omit the
signature of a function introduced for use in annotations. It
is automatically inferred by CleanJava and such a function
typically defines a polymorphic function. The following is
one possible formulation of the isSubState function with
its signature completely specified.

boolean isSubState(Square[][] s1, Square[][] s2) =
s1.length == s2.length &&
CJSet{1..s1.length}->forAll(int i|

s1[i].length == s2[i].length &&
CJSet{1..s1[i].length}->forAll(int j|

s1[i][j] == s2[i][j] &&
(s1[i][j].isMarked ==>

s1[i][j].getPlayer() == s2[i][j].getPlayer())))

If code is annotated with its intended function, its correct-
ness can be proved formally. It would be instructive to sketch
a correctness proof of the code shown in Figure 2. It requires
the following proof obligations.

• Proof that the composition of functions f1 and f2 is
correct with respect to, or a refinement (⊑) of, f0, i.e.,
f1; f2 ⊑ f0, where “;” denotes a functional composition.

• Proof that f1, f2, and f3 are correctly refined by the
corresponding code.

In functional verification, a proof is often trivial or straight-
forward because a code function can be easily calculated and
directly compared with an intended function; for example, f1
and f3 are both code and intended functions. However, one
often need to use different techniques such as a case analysis
for an if statement and an induction for a while statement
as in the proof of f2 [9] [10]. Below we discharge the first
proof obligation, where T is short for Square[][].

f1; f2 ≡ [p := nextPlayer()];
[squares, p := T→any(sqs| isGameOver(sqs) &&
isSubState(squares, sqs)), anything]

≡ [squares, p := T→any(sqs| isGameOver(sqs) &&
isSubState(squares, sqs)), anything]

⊑ [squares := T→any(sqs| isGameOver(sqs) &&

isSubState(squares, sqs)]
⊑ [squares := T→any(sqs| isGameOver(sqs))]
≡ f0

III. OVERVIEW OF OUR APPROACH

The key idea of our approach is (a) to derive code annota-
tions from formal designs and (b) to prove the correctness of
code in Cleanroom-style functional verification by refining the
derived annotations. We use OCL as the notation for formally
documenting design decisions and details and CleanJava as
the notation for writing code annotations. There are several
advantages in using OCL as a formal design notation com-
pared to more traditional formal specification languages such
as Z [13]. It is a textual formal specification language that
provide concise and precise expressions that have neither the
ambiguities of natural language nor the inherent difficulty of
using complex mathematics. As part of the standard modeling
language UML, it allows one to specify and attach constraints
and rules to various design models expressed in diagrams.
From UML dynamic models with OCL constraints, e.g., state
machine diagrams, it is also possible to derive working code
(see Section IV for an example). There are also advantages
in using CleanJava as the annotation notation and verification
technique, compared to Hoare-style assertions. Unlike Hoare
logic based on the first-order predicate logic, the technique
requires a minimal mathematical background by viewing a
program as a mathematical function from one program state
to another and by using equational reasoning based on sets
and functions. The reasoning in Hoare logic is backward in
that one derives (weakest) preconditions from postconditions.
This is similar to reading source code backward from the last
line to the first. The functional program verification technique
supports a forward reasoning by reflecting the way program-
mers reason about the correctness of a program informally. The
combination of OCL and CleanJava will make our approach
more approachable to Java programmers and practitioners.

The main steps of our approach are as follows.
1) Document a design using UML diagrams along with

OCL constraints specifying design decisions and details.
2) Generate skeleton or working code from UML design

models.
3) Translate OCL constraints to CleanJava intended func-

tions to annotate the generated code.
4) Write algorithms to complete the skeleton code by

refining the intended functions.
5) Verify the correctness of the algorithm code with respect

to its intended function.
The last two steps may be performed simultaneously in

a stepwise refinement fashion. In the next section, we will
illustrate these steps in detail by applying them to our tic-tac-
toe example.

IV. ILLUSTRATION

In this section we illustrate our proposed approach by
applying it to the running example. As sketched in the previous

3

context TicTacToe
inv: squares[*,*].player->forAll(p|players->includes(p))

context TicTacToe::TicTacToe()
post: squares[*,*]->forAll(s|not s.isMarked)

context TicTacToe::play():void
pre: squares[*,*]->forAll(s|not s.isMarked)
post: isWonBy(players->at(1)) or isWonBy(players->at(2))

or not hasEmptySquare()

context TicTacToe::isWonBy(p: Player): boolean
body: Set{0..2}->exists(i|Set{0..2}->

forAll(j|getSquare(i,j).isMarkedBy(p)))
or Set{0..2}->exists(i|Set{0..2}->

forAll(j|getSquare(i,j).isMarkedBy(p)))
or Set{0..2}->collect(i|getSquare(i,i))->

forAll(s|s.isMarkedBy(p))
or Set{0..2}->collect(i|getSquare(i,2-i))->

forAll(s|s.isMarkedBy(p))

context TicTacToe::hasEmptySquare(): boolean
body: squares[*,*]->exists(s|not s.isMarked)

context TicTacToe::getSquare(i: int, j: int): Square
pre: 0 <= i and i <= 2 and 0 <= j and j <= 2
post: result = squares[i,j]

context Square::isMarked: boolean
derive: player.notEmpty()

context Square::isMarkedBy(p: Player): boolean
body: player = p

context Player::Player(g: TicTacToe)
post: game = g

context Player::nextMove(): Square
pre: game.hasEmptySquare()
post: not result.isMarked and

game.squares[*,*]->includes(result)

Fig. 3. OCL constraints for tic-tac-toe

section, the first step is to document a detailed design using
UML diagrams along with OCL constraints.

1) Detailed design in UML and OCL: We elaborate our
class diagram model by adding OCL constraints to the model
and documenting detailed design decisions. Figure 3 shows
OCL constraints for classes TicTacToe, Square, and Player
along with several new operations introduced. In OCL, we
document class invariants, operation pre and postconditions,
values for derived attributes (e.g., isMarked of class Square),
and return values of query operations (e.g., the isWonBy

operation of class TicTacToe and the isMarkedBy operation
of class Square). In addition to class invariants and oper-
ation pre and postconditions, OCL provides several other
constructs, some of which are used in the example. The body
construct defines the result of a query operation, and the
derive construct specifies the value of a derived attribute
or association end. The collection operation at appearing in
the postcondition of the play operation returns the element
at the given index; OCL uses 1-based index. The notation
Sequence{0..2} denotes a sequence consisting of numbers
from 0 to 2, inclusive.

It is also possible to define detailed algorithms for important
operations using a combination of UML diagrams and OCL.
For example, we can define an algorithm for the play()

operation of the TicTacToe class using a UML state machine
diagram, as shown below.

/p=players.at(2)
Played by p

[not complete()1]/
p = nextPlayer(p)2;
s = p.nextMove();
s.setPlayer(p)

[complete()1]

1complete() ≡ isWonBy(p) or not hasEmptySquare()
2nextPlayer(p) ≡ players->any(q | q <> p)

The state machine is called a behavior state machine and
specifies that each player takes a turn to make a move—i.e.,
mark a square—until a play becomes completed. A play is
complete if it is won by a player or there is no more empty
square left. A behavior state machine can be used to derive
implementation code (see below).

2) Skeleton code: The next step is to derive skeletal code
from UML diagrams such as class diagrams. From a detailed
class diagram, skeletal code such as shown below can be
systematically or automatically generated.

public class TicTacToe {
private Square[][] squares;
private Player[] players;
public TicTacToe() { ... }
public void play() {... }
public boolean isWonBy(Player p) { ... }
public boolean hasEmptySquare() { ... }
public Square getSquare(int i, int j) { ... }

}

public class Square {
private Player player;
public void setPlayer(Player p) { player = p; }
public Player getPlayer() { return player; }
public isMarkedBy(Player p) { ... }
public boolean isMarked() { ... }

}

public class Player {
private TicTacToe game;
public Player(TicTacToe g) { ... }
public Square nextMove() { ... }

}

For an association like markedBy, a pair of getter and setter
methods (e.g., getPlayer and setPlayer) can also be
automatically generated using the role names of the association
ends (e.g., player). A derived attribute such as isMarked of
class Square is translated to a query method.

This step may require making important implementation
decisions such as deciding data structures. For example,
we decided to represent the qualified association between
TicTacToe and Square using a two-dimensional array. Such
decisions often have impacts on the way we translate OCL
constraints to CleanJava annotations in the following step,
as CleanJava annotations are usually expressed in terms of
concrete representation values.

3) OCL-to-CleanJava Translation: We next translate OCL
constraints to CleanJava annotations and add them to the
skeletal code. Figure 4 shows the skeletal code of class
TicTacToe annotated in CleanJava. Most annotations are direct
translations of the corresponding OCL constraints such as

4

public class TicTacToe {
/*@ inv: [squares.length == 3 &&

@ squares->forAll(Square[] sqs|sqs.length == 3)] @*/

/*@ inv: [players.length == 2]

/*@ inv: [squares->forAll(Square[] sqs|
@ sqs->forAll(Square sq| !sq.isMarked() ||
@ players->includes(sq.getPlayer()) @*/

private Square[][] squares;
private Player[] players;

/*@ [square := Square[][]->any(Squares[][] sqs|
@ isPristine(sqs))] @*/
public TicTacToe() { ... }

/*@ [isPristine(sqs) ->
@ squares := Square[][]->any(Square[][] sqs|
@ isGameOver(sqs))] @*/

public void play() {... }

/*@ [result : = isWonBy(squares, p)] @*/
public boolean isWonBy(Player p) { ... }

/*@ [result := squares->exists(Square[] sqs|
@ sqs->exists(Square sq| !sq.isMarked())) @*/

public boolean hasEmptySquare() { ... }

/*@ [0 <= i && i <= 2 && 0 <= j && j <= 2 ->
@ result := squares[i][j]] @*/

public Square getSquare(int i, int j) { ... }

/*@ fun boolean isPristine(Square[][] sqs) =
@ sqs->forAll(Square[] sq|
@ sq->forAll(Square s| !s.isMarked())) @*/

/*@ fun boolean isGameOver(Square[][] sqs) =
@ isWonBy(sqs, players[0])
@ || isWonBy(players[1])
@ || sqs->forAll(Square[] sq|
@ sq->forAll(Square s| s.isMarked())) @*/

/*@ fun boolean isWonBy(Square[][] sqs, Player p) =
@ CJSet{0..2}->exists(int i| CJSet{0..2}->
@ forAll(int j|sqs[i][j].isMarkedBy(p)))
@ || CJSet{0..2}->exists(int i|CJSet{0..2}->
@ forAll(int j|sqs[i][j].isMarkedBy(p)))
@ || CJSet{0..2}->collect(int i|sqs[i][i]->
@ forAll(Square s|s.isMarkedBy(p))
@ || CJSet{0..2}->collect(int i|sqs[i][2-i])->
@ forAll(Square s|s.isMarkedBy(p)) @*/

}

Fig. 4. Skeletal code with CleanJava annotations

invariants and pre and postconditions. However, the first two
invariants are specific to the Java language and constraint the
sizes of arrays. This is because the array size is not part of an
array type in Java. As shown, OCL invariants are translated
to CleanJava invariants [20], and pre and postconditions are
translated to CleanJava intended functions. In general, pre and
postconditions of the form pre: P post: Q are translated
to an intended function of the form [P ′ → v1, v2, ..., vn :=
Ei, ..., En], where P ′ is P written in the CleanJava syntax
and vi’s and Ei’s are derived from Q (see Section V for
details). As shown, a concurrent assignment may have an
optional condition or guard followed by an → symbol. This
conditional concurrent assignment statement specifies a partial
function that is defined only when the condition (P ′) holds.
The example also shows that one can introduce mathematical
functions (e.g., isPristine, isGameOver, and isWonBy) for

the purpose of writing annotations.
4) Code Writing: Once a method is annotated with an

intended function, the next step is to come up with working
code—the method body. There are several possibilities here.
It can be developed independently by referring to its pre and
postconditions or the intended function. The intended function
may be refined to working code in a stepwise refinement
fashion. Yet another possibility is—if a detailed algorithm
design was done and documented using a UML diagram such
as a state machine diagram—to derive working code from
a formal design model by systematically translating it. For
example, it is straightforward to derive the following code for
the play() method of the TicTacToe class from the behavior
sate machine that describes its algorithm (see Section IV).

Player p = players[1];
while (!isWonBy(p) && hasEmptySquare()) {

p = p == players[0] ? players[1] : players[0];
Square sq = p.nextMove();
sq.setPlayer(p);

}

5) Formal Verification: We verify the correctness of code
by documenting each section of the code with an intended
function and performing a functional program verification as
described in Section II-B. We prove that the code is correct
with respect to its intended function. If code was derived from
a formally specified algorithm model such as a state machine
and the algorithm was proved to be correct, the code may
be correct by the way it was constructed provided that the
algorithm model was transformed to code by following a set
of transformation rules [21]. If a stepwise refinement was
used to construct the code, the correctness proof may have
already been performed as part of the refinement. In addition
to intended functions and method bodies, we also need to
prove the correctness of class invariants, if any. Essentially,
we need to proved that each class invariant is established by
the constructors of a class and preserved by all other methods
of the class [20].

V. TRANSLATING OCL TO CLEANJAVA

An important component of our approach is translating
OCL constraints to CleanJava annotations. We believe that this
translation can be systematically done and even be automated
by defining transformation rules. As an example, let’s consider
the invariant of the TicTacToe class shown below.

inv: squares[*,*].player->forAll(p|players->includes(p))

The constraint refers to two associations of class TicTacToe
(squares and players) and an attribute of class Square
(player). Remember that squares is the role name of a
qualified association from TicTacToe to Square (see Figure 1
in Section II-A). If we know how these UML elements are
reified in an implementation, we should be able to translate
the OCL invariant to a CleanJava invariant by replacing
UML/OCL elements with the corresponding Java/CleanJava
elements. The following is one possible translation presented
in the previous section.

5

inv: [squares->forAll(Square[] sqs|
sqs->forAll(Square sq| !sq.isMarked() ||
players->includes(sq.getPlayer())))]

However, a more direct and systematic translation would be
to map each OCL construct to the corresponding CleanJava
constructs. If there is no corresponding CleanJava construct,
we can introduce a user-defined function for it (see below).
inv: [allPlaces(squares)->collect(Squares s| s.getPlayer())

->forAll(Player p|players->includes(p))] where
CJSet<Square> allSquares(Square[][] sqs) = sqs->iterate(

Square[] sq; CJSet<Square> r = new CJSet<Square>()|
r.addAll(CJSet.fromArray(sq)))

In this translation, the reference to the qualified association
end, squares[*,*], is now translated to a user-defined
function allSquares that, given a 2-dimensional array of
squares, returns a set consisting of all the squares contained in
the given array; the function is defined using the iterate col-
lection operator. Also note that the dot notation in OCL when
navigating an association (e.g., squares[*,*].player) is
short for the collect iteration operator. Thus, it is translated
to the CleanJava collect iteration operator.

The translation of pre and postconditions could be more
involved depending on how they are written in OCL. This
is because a functional program verification technique and
notation is fundamentally different from an assertion-based
technique and notation such as Hoare logic [11] and OCL.
It is direct and constructive in that for each state variable such
as a program variable one must state its final value explicitly.
On the other hand, an assertion-based technique is indirect
and constraint-based in that one specifies the condition that
the final state has to satisfy by stating a relationship among
state variables. The final value of a state variable isn’t defined
directly but instead is constrained and given indirectly by the
specified condition.

As described in the previous section, pre and postcon-
ditions are translated to an intended function written using
a conditional concurrent assignment. If there is a precon-
dition, the translation produces a partial function of the
form, [P → v1, v2, ..., vn := Ei, ..., En], where P is the
translation of the OCL precondition and vi’s and Ei’s are
derived from the OCL postcondition. For the translation of
a postcondition, we can think of two different cases. If
it is written in a constructive form, e.g, x1 = E1 and
x2 = E2 and · · · and xn = En, one possible transla-
tion would be [xi, x2, ..., xn := E′

1, E
′
2, ..., E

′
n], where E′

i

is a CleanJava translation of Ei. An example is the post-
condition of the getSquare operation of TicTacToe class,
result = squares[i,j], which is straightforwardly trans-
lated to [result := squares[i][j]]. If a postcondition
is not written constructively, its translation is more involved
and complicate. There are several such postconditions in our
TicTacToe example, including that of the nextMove operation
of class Player, shown below.
context Player::nextMove(): Square

pre: game.hasEmptySquare()
post: not result.isMarked and

game.squares[*,*]->includes(result)

However, it is also possible to translate these postconditions
systematically and perhaps even automatically. One possibility
is to use the any iteration operator that returns an arbitrary
element of a collection that meets a given condition. Con-
sider a postcondition P (x1, x2, · · · , xn), written in terms of
mutable state variables xi’s like class attributes and the return
value. The new values of xi’s collectively have to satisfy the
constraint P . Thus, the postcondition can be translated to:

[x1, x2, · · · , xn :=
T1->any(T1 x′

1|
T2->any(T2 x′

2|
· · ·
Tn->any(Tn x′

2|P ′(x1, x2, · · · , xn))))]

where P ′ is a CleanJava translation of P . For example, the
pre and postconditions of the above nextMove operation can
be translated to the following intended function.

[game.hasEmptySquare() ->
result := Square->any(Square s| !s.isMarked() &&

allSquares()->includes(s)) where
allSquares() = /* ... */

VI. DISCUSSION AND EVALUATION

There are a few interesting questions about translating OCL
constraints to CleanJava annotations. OCL provides a special
treatment for undefinedness of an expression and thus uses a
three-valued (true, false, and undefined) propositional logic.
This leads to an unpleasant consequence not only in correct-
ness proof1 but also in our translation of OCL constraints
to CleanJava annotations. For example, the OCL disjunction
operator (or) cannot be directly translated to the Java logical
disjunction operator (||). In OCL, E1 or E2 is true even if E1

is undefined as long as E2 is true. In Java, however, the result
of E1 || E2 is an exception (i.e., undefined) if the evaluation
of E1 throws an exception. Operationally the equivalent Java
code is:

boolean result = false;
Exception first = null;
try { result = E′

1; }
catch (Exception e) { first = e; }
finally {

if (!result) result = E′
2;

if (!result && e != null) throw first;
}

There seems to be no simple and natural way of translating
this OCL expression to CleanJava that is faithful to the
standard OCL semantics. One possibility is to introduce a
CleanJava-specific conjunction operator with the same seman-
tics as the standard OCL, but its usefulness in general is
questionable.

We said in the previous section that if a postcondition is
written in a constructive form, e.g., x = E, we translate it to
an intended function of the form, [x := E]. But what if E is
also a mutable state variable, say y, to give a postcondition
of the form x = y? The assertion states that x and y have an
equal value in the final state. Thus, in addition to the intended

1For example, a well-known law of propositional logic, A ⇒ B = ¬A∨B,
doesn’t hold in OCL [22].

6

function [x := y], [y := x] is also a correct refinement. In
fact, there are numerous correct implementations including
[x, y := 0, 0]. However, we learned that in most cases when
one writes an OCL constraint like x = y the intention was
in fact x = y and y = y@pre. In OCL, y@pre denotes
y’s initial value, and such a conjunct is needed because
OCL doesn’t provide a special construct for stating a frame
axiom or property. Thus, we think our translation scheme is
reasonable. If a postcondition is not written constructively, we
used the any iteration operator to translate it. This allows us
to systematically and possibility automatically translate OCL
constraints. However, the any operator is similar to the µ
operator in Z [13], and the resulting expression is not in a
form that is easy to manipulate in verification using equational
reasoning. Fortunately, however, our empirical study indicates
that a significant fraction of OCL constraints is written con-
structively; e.g., 67% of OCL constraints for our tic-tac-toe
example were written constructively.

We are currently elaborating and refining our approach
as well as formulating the OCL-CleanJava translation rules.
We are also assessing and evaluating our approach using
more realistic case studies. The preliminary result is very
promising in that we were able to systematically translate
OCL constraints to CleanJava annotations and to prove the
correctness of implementation code. In fact we found that an
intended function often times provided a good guidance to a
possible implementation. For example, we coded CleanJava
user-defined functions as (private) helper methods, and an
iteration operator such as forAll triggered an introduction of
a loop in implementation code. The structure and constructs
of a CleanJava annotation are frequently reflected in the
implementation code, providing an additional assurance that
the code conforms to its design.

VII. CONCLUSION

In this paper we proposed a new method that can comple-
ment testing as a practical software verification and validation
technique. Our approach takes advantage of recent empha-
sis and advances on software modeling and systematically
translates formally-specified design constraints such as class
invariants and operation pre and postconditions written in OCL
to code-level annotations written in CleanJava. The translated
CleanJava annotations are refined to correct implementations
in a stepwise refinement fashion or used for the correctness
proof of the implementation code using a Cleanroom-style
functional program verification technique.

We believe that our combination of OCL and CleanJava pro-
vides several advantages. CleanJava supports Cleanroom-style
functional program verification, where a program is viewed as
a mathematical function from one program state to another
and a correctness proof is done by essentially comparing
two functions, the function computed by the program and its
specification. Since the technique uses equational reasoning
based on sets and functions, it requires a minimal mathemat-
ical background, and unlike Hoare logic it supports forward
reasoning, reflecting the way programmers informally reason

about the correctness of a program. Thus, our approach will
be more approachable to Java programmers and practitioners.
Since OCL is part of the standard modeling language UML,
it would be easier to adopt our approach and incorporate or
integrate into existing object-oriented software development
methods.

ACKNOWLEDGMENT

This work was supported in part by DUE-0837567.

REFERENCES

[1] A. W. Brown, “Model driven architecture: Principles and practice,”
Software and System Modeling, vol. 3, no. 4, pp. 314–327, Dec. 2004.

[2] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA, 2nd ed. Addison-Wesley, 2003.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Lan-
guage Reference Manual, 2nd ed. Addison-Wesley, 2004.

[4] A. Tang and H. van Vliet, “Modeling constraints improves software
architecture design reasoning,” in Proceedings of the Joint Working
IEEE/IFIP Conference on Software Architecture 2009 and European
Conference on Software Architecture 2009, 2009, pp. 253–256.

[5] Y. Cheon, C. Yeep, and M. Vela, “The CleanJava language for functional
program verification,” International Journal of Software Engineering,
vol. 5, no. 1, pp. 47–68, Jan. 2012.

[6] H. D. Mills, M. Dyer, and R. Linger, “Cleanroom software engineering,”
IEEE Software, vol. 4, no. 5, pp. 19–25, Sep. 1987.

[7] S. J. Prowell, C. J. Trammell, R. C. Linger, and J. H. Poore, Cleanroom
Software Engineering. Addison Wesley, Feb. 1999.

[8] A. Stavely, Toward Zero Defect Programming. Addison-Wesley, 1999.
[9] Y. Cheon, “Functional specification and verification of object-oriented

programs,” Department of Computer Science, The University of Texas
at El Paso, 500 West University Ave., El Paso, TX, 79968, Tech. Rep.
10-23, Aug. 2010.

[10] Y. Cheon and M. Vela, “A tutorial on functional program verification,”
Department of Computer Science, The University of Texas at El Paso,
Tech. Rep. 10-26, Sep. 2010.

[11] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of ACM, vol. 12, no. 10, pp. 576–580,583, Oct. 1969.

[12] Z. Langari and A. B. Pidduck, “Quality, cleanroom and formal methods,”
SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, May 2005.

[13] J. M. Spivey, Understanding Z: a Specification Language and its Formal
Semantics. New York, NY: Cambridge University Press, 1988.

[14] A. M. Stavely, “Integrating Z and Cleanroom,” in LFM2000: Fifth NASA
Langley Formal Methods Workshop, Jun. 2000, pp. 141–150.

[15] A. Hamie, “Towards verifying java realizations of OCL-constrained
design models using JML,” in 6th IASTED International Conference
on Software Engineering and Applications, 2002.

[16] G. T. Leavens, “Tutorial on JML, the Java Modeling Language,” in ASE
’07: Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering. ACM, 2007, p. 573.

[17] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll, “An overview of JML tools and
applications,” International Journal on Software Tools for Technology
Transfer, vol. 7, no. 3, pp. 212–232, Jun. 2005.

[18] C. Avila, A. Sarcar, Y. Cheon, and C. Yeep, “Runtime constraint check-
ing approaches for OCL, a critical comparison,” in Proceedings of SEKE
2010, The 22-nd International Conference on Software Engineering and
Knowledge Engineering, July 1-3, 2010, San Francisco, CA, 2010, pp.
393–398.

[19] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley, Jan. 2003.

[20] C. Avila and Y. Cheon, “Functional verification of class invariants in
CleanJava,” in Innovations and Advances in Computer, Information,
Systems Sciences, and Engineering, ser. Lecture Notes in Electrical
Engineering, vol. 152. Springer-Verlag, Aug. 2012, pp. 1067–1076.

[21] K. Lano, Model-Driven Software Development with UML and Java.
Course Technology, 2009.

[22] R. Hennicker, H. Hussmann, and M. Bidoit, “On the precise meaning
of OCL constraints,” in Object Modeling with the OCL, The Rationale
behind the Object Constraint Language. London, UK, UK: Springer-
Verlag, 2002, pp. 69–84.

7

